Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import snapshot_download, create_repo | |
| from huggingface_hub.utils import RepositoryNotFoundError | |
| import os | |
| from src.about import ( | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| AutoEvalColumn, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER | |
| from src.populate import get_leaderboard_df | |
| from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval | |
| def create_results_dataframe(): | |
| """Create and return the results DataFrame for display""" | |
| import sys | |
| sys.stderr.write("\nπ CREATE_RESULTS_DATAFRAME CALLED\n") | |
| sys.stderr.flush() | |
| df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
| sys.stderr.write(f"π Retrieved leaderboard df: {df.shape if df is not None else 'None'}\n") | |
| sys.stderr.flush() | |
| if df is None or df.empty: | |
| sys.stderr.write("β οΈ DataFrame is None or empty, returning empty DataFrame\n") | |
| sys.stderr.flush() | |
| # Return empty DataFrame with proper columns | |
| return pd.DataFrame(columns=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"]) | |
| sys.stderr.write(f"π Original DataFrame columns: {list(df.columns)}\n") | |
| sys.stderr.flush() | |
| # Check if required columns exist | |
| required_cols = [ | |
| AutoEvalColumn.model.name, | |
| "Perplexity", | |
| AutoEvalColumn.model_trace_p_value.name, | |
| AutoEvalColumn.average.name, | |
| AutoEvalColumn.model_type.name, | |
| AutoEvalColumn.precision.name, | |
| ] | |
| missing_cols = [col for col in required_cols if col not in df.columns] | |
| if missing_cols: | |
| sys.stderr.write(f"β οΈ Missing columns in DataFrame: {missing_cols}\n") | |
| sys.stderr.flush() | |
| # Add missing columns with default values | |
| for col in missing_cols: | |
| if col == AutoEvalColumn.model_trace_p_value.name: | |
| df[col] = None | |
| sys.stderr.write(f"β Added {col} column with None values\n") | |
| # Select and rename columns for display | |
| try: | |
| display_df = df[required_cols].copy() | |
| sys.stderr.write(f"β Selected columns successfully: {list(display_df.columns)}\n") | |
| except Exception as e: | |
| sys.stderr.write(f"π₯ Error selecting columns: {e}\n") | |
| sys.stderr.flush() | |
| return pd.DataFrame(columns=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"]) | |
| # Rename columns for better display | |
| display_df.columns = ["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"] | |
| sys.stderr.write(f"π― Final display DataFrame shape: {display_df.shape}\n") | |
| sys.stderr.write(f"π― Final columns: {list(display_df.columns)}\n") | |
| # Check p-value column | |
| if "Match P-Value" in display_df.columns: | |
| p_value_stats = display_df["Match P-Value"].describe() | |
| sys.stderr.write(f"π P-Value column stats:\n{p_value_stats}\n") | |
| sys.stderr.flush() | |
| return display_df | |
| def run_perplexity_test(model_name, revision, precision): | |
| """Run perplexity evaluation on demand.""" | |
| import sys | |
| import traceback | |
| import gradio as gr | |
| if not model_name: | |
| return "Please enter a model name.", gr.update(), gr.update() | |
| try: | |
| # Use stderr for more reliable logging in HF Spaces | |
| sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n") | |
| sys.stderr.write(f"Model: {model_name}\n") | |
| sys.stderr.write(f"Revision: {revision}\n") | |
| sys.stderr.write(f"Precision: {precision}\n") | |
| sys.stderr.flush() | |
| success, result = run_dynamic_perplexity_eval(model_name, revision, precision) | |
| sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n") | |
| sys.stderr.flush() | |
| if success: | |
| sys.stderr.write("Evaluation succeeded - updating both results tables\n") | |
| sys.stderr.flush() | |
| # Get updated results (this will trigger model trace p-value computation for the new model) | |
| sys.stderr.write("π Creating updated results DataFrame (may compute model trace p-values)...\n") | |
| sys.stderr.flush() | |
| updated_df = create_results_dataframe() | |
| sys.stderr.write("β Updated DataFrame created successfully\n") | |
| sys.stderr.flush() | |
| success_msg = f"""β **Perplexity evaluation completed successfully!** | |
| **Model**: {model_name} | |
| **Perplexity Score**: {result:.4f} | |
| π **Results have been saved and both tables have been updated!** | |
| Note: Model trace p-value computation may take additional time and will appear in the logs.""" | |
| return success_msg, gr.update(value=updated_df), gr.update(value=updated_df) | |
| else: | |
| return f"β **Evaluation failed**: {result}", gr.update(), gr.update() | |
| except Exception as e: | |
| error_msg = str(e) | |
| traceback_str = traceback.format_exc() | |
| sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n") | |
| sys.stderr.write(f"Traceback: {traceback_str}\n") | |
| sys.stderr.flush() | |
| return f"β **Critical error**: {error_msg}", gr.update(), gr.update() | |
| # Initialize results repository and directory | |
| try: | |
| # Try to download existing repository | |
| try: | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, | |
| local_dir=EVAL_RESULTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| token=TOKEN | |
| ) | |
| except RepositoryNotFoundError: | |
| # Create the repository if it doesn't exist | |
| print(f"Creating new results repository: {RESULTS_REPO}") | |
| create_repo( | |
| repo_id=RESULTS_REPO, | |
| repo_type="dataset", | |
| private=False, | |
| token=TOKEN | |
| ) | |
| # Create local directory | |
| os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
| except Exception as e: | |
| print(f"Error initializing results: {e}") | |
| # Ensure local directory exists even if repo operations fail | |
| os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
| # Get initial results data | |
| import sys | |
| sys.stderr.write("\nπ STARTING GRADIO APP INITIALIZATION\n") | |
| sys.stderr.write("π Creating initial results DataFrame...\n") | |
| sys.stderr.flush() | |
| RESULTS_DF = create_results_dataframe() | |
| sys.stderr.write(f"β Initial DataFrame created with shape: {RESULTS_DF.shape}\n") | |
| sys.stderr.write(f"π Columns: {list(RESULTS_DF.columns)}\n") | |
| sys.stderr.flush() | |
| # Create the Gradio interface | |
| sys.stderr.write("π¨ Creating Gradio interface...\n") | |
| sys.stderr.flush() | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π Results", elem_id="results-tab", id=0): | |
| gr.Markdown("## Model Evaluation Results") | |
| results_table = gr.DataFrame( | |
| value=RESULTS_DF, | |
| headers=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"], | |
| interactive=False, | |
| wrap=False | |
| ) | |
| with gr.TabItem("π About", elem_id="about-tab", id=1): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2): | |
| gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2") | |
| revision = gr.Textbox(label="Revision", placeholder="main", value="main") | |
| precision = gr.Dropdown( | |
| choices=["float16", "bfloat16"], | |
| label="Precision", | |
| value="float16" | |
| ) | |
| debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True) | |
| with gr.Column(): | |
| test_button = gr.Button("π Run Perplexity Test", variant="primary") | |
| result = gr.Markdown() | |
| gr.Markdown("## Live Results") | |
| live_results_table = gr.DataFrame( | |
| value=RESULTS_DF, | |
| headers=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"], | |
| interactive=False, | |
| wrap=False | |
| ) | |
| gr.Markdown(""" | |
| ### Tips: | |
| - **Check stderr logs** in HF Spaces for detailed debugging information | |
| - **Results will update automatically** in the table above after evaluation completes | |
| - **Example models to test**: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`, `openai-community/gpt2-large` | |
| - **Lower perplexity scores = better performance** (better at predicting text) | |
| ### How it works: | |
| 1. Enter a model name from Hugging Face Hub | |
| 2. Click "Run Perplexity Test" | |
| 3. Wait for evaluation to complete (may take a few minutes for large models) | |
| 4. Results will appear automatically in the table above! | |
| """) | |
| test_button.click( | |
| run_perplexity_test, | |
| [model_name, revision, precision], | |
| [result, live_results_table, results_table] | |
| ) | |
| sys.stderr.write("π― GRADIO INTERFACE SETUP COMPLETE\n") | |
| sys.stderr.write("π LAUNCHING GRADIO APP WITH MODEL TRACING INTEGRATION\n") | |
| sys.stderr.write("π Features enabled:\n") | |
| sys.stderr.write(" - Perplexity evaluation\n") | |
| sys.stderr.write(" - Model trace p-value computation (vs GPT-2 base)\n") | |
| sys.stderr.write(" - Match statistic with alignment\n") | |
| sys.stderr.write("π Ready to accept requests!\n") | |
| sys.stderr.flush() | |
| demo.queue(default_concurrency_limit=5).launch() |