from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda ################################################################ def simple_unet_model(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS): #Build the model inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) #s = Lambda(lambda x: x / 255)(inputs) #No need for this if we normalize our inputs beforehand s = inputs #Contraction path c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) c1 = Dropout(0.1)(c1) c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1) p1 = MaxPooling2D((2, 2))(c1) c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1) c2 = Dropout(0.1)(c2) c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2) p2 = MaxPooling2D((2, 2))(c2) c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2) c3 = Dropout(0.2)(c3) c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3) p3 = MaxPooling2D((2, 2))(c3) c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3) c4 = Dropout(0.2)(c4) c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4) p4 = MaxPooling2D(pool_size=(2, 2))(c4) c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4) c5 = Dropout(0.3)(c5) c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5) #Expansive path u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5) u6 = concatenate([u6, c4]) c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6) c6 = Dropout(0.2)(c6) c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6) u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c3]) c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7) c7 = Dropout(0.2)(c7) c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7) u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c2]) c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8) c8 = Dropout(0.1)(c8) c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8) u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c1], axis=3) c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9) c9 = Dropout(0.1)(c9) c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() return model