import gradio as gr import numpy as np from transformers.file_utils import cached_path, hf_bucket_url import os from transformers import Wav2Vec2ProcessorWithLM, AutoModelForCTC from datasets import load_dataset import torch import kenlm import torchaudio cache_dir = './cache/' processor = Wav2Vec2ProcessorWithLM.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token=os.getenv("AnnarabicToken")) model = AutoModelForCTC.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token=os.getenv("AnnarabicToken")) # define function to read in sound file def speech_file_to_array_fn(path, max_seconds=120): batch = {"file": path} speech_array, sampling_rate = torchaudio.load(batch["file"]) if sampling_rate != 16000: transform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000) speech_array = transform(speech_array) speech_array = speech_array[0] if max_seconds > 0: speech_array = speech_array[:max_seconds*16000] batch["speech"] = speech_array.numpy() batch["sampling_rate"] = 16000 return batch # tokenize def inference(audio): # read in sound file # load dummy dataset and read soundfiles ds = speech_file_to_array_fn(audio) # infer model input_values = processor( ds["speech"], sampling_rate=ds["sampling_rate"], return_tensors="pt" ).input_values # decode ctc output with torch.no_grad(): logits = model(input_values).logits output = processor.decode(logits.numpy()[0]).text print(output) return output inputs = gr.inputs.Audio(label="Input Audio", type="filepath") outputs = gr.outputs.Textbox(label="Output Text") title = "Annarabic Speech Recognition System" description = 'Demo for Annarabic ASR. To use it, simply upload your audio, or click on one of the examples to load them. Only the 10 first seconds of the audio will be transcribed and GPU runtime is not used. For more information, contact Ahmed Jaafari via email: a.jaafari@aui.ma or phone: +212658537105.' examples=[['Aya.mp3'], ['Loubna.mp3'], ['Omar.wav'], ['Yassir.wav']] article="* The ASR never trained on the given examples." gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()