import gradio as gr from transformers import DonutProcessor, VisionEncoderDecoderModel import requests from PIL import Image import torch, os, re torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_40777.png', 'chart_example_1.png') torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/OECD_SECONDARY_GRADUATION_RATE_ESP_ITA_MEX_000019.png', 'chart_example_2.png') model_name = "ahmed-masry/unichart-chartqa-960" model = VisionEncoderDecoderModel.from_pretrained(model_name) processor = DonutProcessor.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def predict(image, input_prompt): input_prompt = " " + input_prompt + " " decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=4, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = sequence.split("")[1].strip() return sequence image = gr.inputs.Image(type="pil", label="Chart Image") input_prompt = gr.inputs.Textbox(label="Question") model_output = gr.outputs.Textbox(label="Model Output") examples = [["chart_example_1.png", "What is the lowest value in blue bar?"], ["chart_example_2.png", "Which country has highest secondary graduation rate in 2018?"]] title = "Interactive Gradio Demo for UniChart-ChartQA model" interface = gr.Interface(fn=predict, inputs=[image, input_prompt], outputs=model_output, examples=examples, title=title, theme='gradio/soft', enable_queue=True) interface.launch()