Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 Microsoft and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for Florence-2. | |
""" | |
import re | |
import logging | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers.feature_extraction_utils import BatchFeature | |
from transformers.image_utils import ImageInput, is_valid_image | |
from transformers.processing_utils import ProcessorMixin | |
from transformers.tokenization_utils_base import ( | |
PaddingStrategy, | |
PreTokenizedInput, | |
TextInput, | |
TruncationStrategy, | |
) | |
from transformers.utils import TensorType | |
logger = logging.getLogger(__name__) | |
# Copied from transformers.models.idefics2.processing_idefics2.is_url | |
def is_url(val) -> bool: | |
return isinstance(val, str) and val.startswith("http") | |
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url | |
def is_image_or_image_url(elem): | |
return is_url(elem) or is_valid_image(elem) | |
def _is_str_or_image(elem): | |
return isinstance(elem, (str)) or is_image_or_image_url(elem) | |
class Florence2Processor(ProcessorMixin): | |
r""" | |
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor. | |
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the | |
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information. | |
Args: | |
image_processor ([`CLIPImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`BartTokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "CLIPImageProcessor" | |
tokenizer_class = ("BartTokenizer", "BartTokenizerFast") | |
def __init__( | |
self, | |
image_processor=None, | |
tokenizer=None, | |
): | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
if not hasattr(image_processor, "image_seq_length"): | |
raise ValueError("Image processor is missing an `image_seq_length` attribute.") | |
self.image_seq_length = image_processor.image_seq_length | |
tokens_to_add = { | |
'additional_special_tokens': \ | |
tokenizer.additional_special_tokens + \ | |
['<od>', '</od>', '<ocr>', '</ocr>'] + \ | |
[f'<loc_{x}>' for x in range(1000)] + \ | |
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>'] | |
} | |
tokenizer.add_special_tokens(tokens_to_add) | |
self.tasks_answer_post_processing_type = { | |
'<OCR>': 'pure_text', | |
'<OCR_WITH_REGION>': 'ocr', | |
'<CAPTION>': 'pure_text', | |
'<DETAILED_CAPTION>': 'pure_text', | |
'<MORE_DETAILED_CAPTION>': 'pure_text', | |
'<OD>': 'description_with_bboxes', | |
'<DENSE_REGION_CAPTION>': 'description_with_bboxes', | |
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding", | |
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons', | |
'<REGION_TO_SEGMENTATION>': 'polygons', | |
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons', | |
'<REGION_TO_CATEGORY>': 'pure_text', | |
'<REGION_TO_DESCRIPTION>': 'pure_text', | |
'<REGION_TO_OCR>': 'pure_text', | |
'<REGION_PROPOSAL>': 'bboxes' | |
} | |
self.task_prompts_without_inputs = { | |
'<OCR>': 'What is the text in the image?', | |
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?', | |
'<CAPTION>': 'What does the image describe?', | |
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.', | |
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.', | |
'<OD>': 'Locate the objects with category name in the image.', | |
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.', | |
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.' | |
} | |
self.task_prompts_with_input = { | |
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}", | |
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask', | |
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}', | |
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.', | |
'<REGION_TO_CATEGORY>': 'What is the region {input}?', | |
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?', | |
'<REGION_TO_OCR>': 'What text is in the region {input}?', | |
} | |
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer) | |
super().__init__(image_processor, tokenizer) | |
def _construct_prompts(self, text): | |
# replace the task tokens with the task prompts if task token is in the text | |
prompts = [] | |
for _text in text: | |
# 1. fixed task prompts without additional inputs | |
for task_token, task_prompt in self.task_prompts_without_inputs.items(): | |
if task_token in _text: | |
assert _text == task_token, f"Task token {task_token} should be the only token in the text." | |
_text = task_prompt | |
break | |
# 2. task prompts with additional inputs | |
for task_token, task_prompt in self.task_prompts_with_input.items(): | |
if task_token in _text: | |
_text = task_prompt.format(input=_text.replace(task_token, '')) | |
break | |
prompts.append(_text) | |
return prompts | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
images: ImageInput = None, | |
tokenize_newline_separately: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length=None, | |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
do_resize: bool = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821 | |
input_data_format: Optional[ | |
Union[str, "ChannelDimension"] # noqa: F821 | |
] = None, | |
resample: "PILImageResampling" = None, # noqa: F821 | |
do_convert_rgb: bool = None, | |
do_thumbnail: bool = None, | |
do_align_long_axis: bool = None, | |
do_rescale: bool = None, | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
of the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
tokenize_newline_separately (`bool`, defaults to `True`): | |
Adds a separately tokenized '\n' at the end of the prompt. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
truncation (`bool`, *optional*): | |
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` | |
is provided, the `input_ids` will also contain the suffix input ids. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
- **labels** -- Labels compatible with training if `suffix` is not None | |
""" | |
return_token_type_ids = False | |
if images is None: | |
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.") | |
if text is None: | |
logger.warning_once( | |
"You are using Florence-2 without a text prompt." | |
) | |
text = "" | |
if isinstance(text, List) and isinstance(images, List): | |
if len(images) < len(text): | |
raise ValueError( | |
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image." | |
) | |
if _is_str_or_image(text): | |
text = [text] | |
elif isinstance(text, list) and _is_str_or_image(text[0]): | |
pass | |
pixel_values = self.image_processor( | |
images, | |
do_resize=do_resize, | |
do_normalize=do_normalize, | |
return_tensors=return_tensors, | |
image_mean=image_mean, | |
image_std=image_std, | |
input_data_format=input_data_format, | |
data_format=data_format, | |
resample=resample, | |
do_convert_rgb=do_convert_rgb, | |
)["pixel_values"] | |
if max_length is not None: | |
max_length -= self.image_seq_length # max_length has to account for the image tokens | |
text = self._construct_prompts(text) | |
inputs = self.tokenizer( | |
text, | |
return_tensors=return_tensors, | |
padding=padding, | |
max_length=max_length, | |
truncation=truncation, | |
return_token_type_ids=return_token_type_ids, | |
) | |
return_data = {**inputs, "pixel_values": pixel_values} | |
if return_token_type_ids: | |
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) | |
return_data.update({"labels": labels}) | |
return BatchFeature(data=return_data) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2 | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2 | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2 | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |
def post_process_generation(self, text, task, image_size): | |
""" | |
Post-process the output of the model to each of the task outputs. | |
Args: | |
text (`str`): The text to post-process. | |
task (`str`): The task to post-process the text for. | |
image_size (`Tuple[int, int]`): The size of the image. height x width. | |
""" | |
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text') | |
task_answer = self.post_processor( | |
text=text, | |
image_size=image_size, | |
parse_tasks=task_answer_post_processing_type, | |
)[task_answer_post_processing_type] | |
if task_answer_post_processing_type == 'pure_text': | |
final_answer = task_answer | |
# remove the special tokens | |
final_answer = final_answer.replace('<s>', '').replace('</s>', '') | |
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']: | |
od_instances = task_answer | |
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances] | |
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances] | |
final_answer = {'bboxes': bboxes_od, 'labels': labels_od} | |
elif task_answer_post_processing_type in ['ocr']: | |
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer] | |
labels = [str(_od_instance['text']) for _od_instance in task_answer] | |
final_answer = {'quad_boxes': bboxes, 'labels': labels} | |
elif task_answer_post_processing_type in ['phrase_grounding']: | |
bboxes = [] | |
labels = [] | |
for _grounded_phrase in task_answer: | |
for _bbox in _grounded_phrase['bbox']: | |
bboxes.append(_bbox) | |
labels.append(_grounded_phrase['cat_name']) | |
final_answer = {'bboxes': bboxes, 'labels': labels} | |
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']: | |
labels = [] | |
polygons = [] | |
for result in task_answer: | |
label = result['cat_name'] | |
_polygons = result['polygons'] | |
labels.append(label) | |
polygons.append(_polygons) | |
final_answer = {'polygons': polygons, 'labels': labels} | |
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']: | |
bboxes = [] | |
bboxes_labels = [] | |
polygons = [] | |
polygons_labels = [] | |
for result in task_answer: | |
label = result['cat_name'] | |
if 'polygons' in result: | |
_polygons = result['polygons'] | |
polygons.append(_polygons) | |
polygons_labels.append(label) | |
else: | |
_bbox = result['bbox'] | |
bboxes.append(_bbox) | |
bboxes_labels.append(label) | |
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels} | |
else: | |
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type)) | |
final_answer = { | |
task: final_answer} | |
return final_answer | |
class BoxQuantizer(object): | |
def __init__(self, mode, bins): | |
self.mode = mode | |
self.bins = bins | |
def quantize(self, boxes: torch.Tensor, size): | |
bins_w, bins_h = self.bins # Quantization bins. | |
size_w, size_h = size # Original image size. | |
size_per_bin_w = size_w / bins_w | |
size_per_bin_h = size_h / bins_h | |
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1]. | |
if self.mode == 'floor': | |
quantized_xmin = ( | |
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1) | |
quantized_ymin = ( | |
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1) | |
quantized_xmax = ( | |
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1) | |
quantized_ymax = ( | |
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1) | |
elif self.mode == 'round': | |
raise NotImplementedError() | |
else: | |
raise ValueError('Incorrect quantization type.') | |
quantized_boxes = torch.cat( | |
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1 | |
).int() | |
return quantized_boxes | |
def dequantize(self, boxes: torch.Tensor, size): | |
bins_w, bins_h = self.bins # Quantization bins. | |
size_w, size_h = size # Original image size. | |
size_per_bin_w = size_w / bins_w | |
size_per_bin_h = size_h / bins_h | |
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1]. | |
if self.mode == 'floor': | |
# Add 0.5 to use the center position of the bin as the coordinate. | |
dequantized_xmin = (xmin + 0.5) * size_per_bin_w | |
dequantized_ymin = (ymin + 0.5) * size_per_bin_h | |
dequantized_xmax = (xmax + 0.5) * size_per_bin_w | |
dequantized_ymax = (ymax + 0.5) * size_per_bin_h | |
elif self.mode == 'round': | |
raise NotImplementedError() | |
else: | |
raise ValueError('Incorrect quantization type.') | |
dequantized_boxes = torch.cat( | |
(dequantized_xmin, dequantized_ymin, | |
dequantized_xmax, dequantized_ymax), dim=-1 | |
) | |
return dequantized_boxes | |
class CoordinatesQuantizer(object): | |
""" | |
Quantize coornidates (Nx2) | |
""" | |
def __init__(self, mode, bins): | |
self.mode = mode | |
self.bins = bins | |
def quantize(self, coordinates: torch.Tensor, size): | |
bins_w, bins_h = self.bins # Quantization bins. | |
size_w, size_h = size # Original image size. | |
size_per_bin_w = size_w / bins_w | |
size_per_bin_h = size_h / bins_h | |
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)' | |
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1]. | |
if self.mode == 'floor': | |
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1) | |
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1) | |
elif self.mode == 'round': | |
raise NotImplementedError() | |
else: | |
raise ValueError('Incorrect quantization type.') | |
quantized_coordinates = torch.cat( | |
(quantized_x, quantized_y), dim=-1 | |
).int() | |
return quantized_coordinates | |
def dequantize(self, coordinates: torch.Tensor, size): | |
bins_w, bins_h = self.bins # Quantization bins. | |
size_w, size_h = size # Original image size. | |
size_per_bin_w = size_w / bins_w | |
size_per_bin_h = size_h / bins_h | |
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)' | |
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1]. | |
if self.mode == 'floor': | |
# Add 0.5 to use the center position of the bin as the coordinate. | |
dequantized_x = (x + 0.5) * size_per_bin_w | |
dequantized_y = (y + 0.5) * size_per_bin_h | |
elif self.mode == 'round': | |
raise NotImplementedError() | |
else: | |
raise ValueError('Incorrect quantization type.') | |
dequantized_coordinates = torch.cat( | |
(dequantized_x, dequantized_y), dim=-1 | |
) | |
return dequantized_coordinates | |
class Florence2PostProcesser(object): | |
r""" | |
Florence-2 post process for converting text prediction to various tasks results. | |
Args: | |
config: A dict of configs. | |
tokenizer: A tokenizer for decoding text to spans. | |
sample config: | |
UNIFIED_POST_PROCESS: | |
# commom configs | |
NUM_BBOX_HEIGHT_BINS: 1000 | |
NUM_BBOX_WIDTH_BINS: 1000 | |
COORDINATES_HEIGHT_BINS: 1000 | |
COORDINATES_WIDTH_BINS: 1000 | |
# task specific configs, override the common configs | |
PRASE_TASKS: | |
- TASK_NAME: 'video_dense_caption' | |
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)' | |
SCORE_MODE: 'avg_cat_name_scores' | |
NUM_BINS: 100 | |
- TASK_NAME: 'od' | |
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)' | |
SCORE_MODE: 'avg_cat_name_scores' | |
Returns: | |
parsed_dict (dict): A dict of parsed results. | |
""" | |
def __init__( | |
self, | |
tokenizer=None | |
): | |
parse_tasks = [] | |
parse_task_configs = {} | |
config = self._create_default_config() | |
for task in config['PARSE_TASKS']: | |
parse_tasks.append(task['TASK_NAME']) | |
parse_task_configs[task['TASK_NAME']] = task | |
self.config = config | |
self.parse_tasks = parse_tasks | |
self.parse_tasks_configs = parse_task_configs | |
self.tokenizer = tokenizer | |
if self.tokenizer is not None: | |
self.all_special_tokens = set(self.tokenizer.all_special_tokens) | |
self.init_quantizers() | |
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding() | |
def _create_black_list_of_phrase_grounding(self): | |
black_list = {} | |
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']: | |
black_list = set( | |
['it', 'I', 'me', 'mine', | |
'you', 'your', 'yours', | |
'he', 'him', 'his', | |
'she', 'her', 'hers', | |
'they', 'them', 'their', 'theirs', | |
'one', 'oneself', | |
'we', 'us', 'our', 'ours', | |
'you', 'your', 'yours', | |
'they', 'them', 'their', 'theirs', | |
'mine', 'yours', 'his', 'hers', 'its', | |
'ours', 'yours', 'theirs', | |
'myself', 'yourself', 'himself', 'herself', 'itself', | |
'ourselves', 'yourselves', 'themselves', | |
'this', 'that', | |
'these', 'those', | |
'who', 'whom', 'whose', 'which', 'what', | |
'who', 'whom', 'whose', 'which', 'that', | |
'all', 'another', 'any', 'anybody', 'anyone', 'anything', | |
'each', 'everybody', 'everyone', 'everything', | |
'few', 'many', 'nobody', 'none', 'one', 'several', | |
'some', 'somebody', 'someone', 'something', | |
'each other', 'one another', | |
'myself', 'yourself', 'himself', 'herself', 'itself', | |
'ourselves', 'yourselves', 'themselves', | |
'the image', 'image', 'images', 'the', 'a', 'an', 'a group', | |
'other objects', 'lots', 'a set', | |
] | |
) | |
return black_list | |
def _create_default_config(self): | |
config = { | |
'NUM_BBOX_HEIGHT_BINS': 1000, | |
'NUM_BBOX_WIDTH_BINS': 1000, | |
'BOX_QUANTIZATION_MODE': 'floor', | |
'COORDINATES_HEIGHT_BINS': 1000, | |
'COORDINATES_WIDTH_BINS': 1000, | |
'COORDINATES_QUANTIZATION_MODE': 'floor', | |
'PARSE_TASKS': [ | |
{ | |
'TASK_NAME': 'od', | |
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>' | |
}, | |
{ | |
'TASK_NAME': 'ocr', | |
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>', | |
'AREA_THRESHOLD': 0.00 | |
}, | |
{ | |
'TASK_NAME': 'phrase_grounding', | |
'FILTER_BY_BLACK_LIST': True | |
}, | |
{ | |
'TASK_NAME': 'pure_text', | |
}, | |
{ | |
'TASK_NAME': 'description_with_bboxes', | |
}, | |
{ | |
'TASK_NAME': 'description_with_polygons', | |
}, | |
{ | |
'TASK_NAME': 'polygons', | |
}, | |
{ | |
'TASK_NAME': 'bboxes', | |
}, | |
{ | |
'TASK_NAME': 'description_with_bboxes_or_polygons', | |
} | |
] | |
} | |
return config | |
def init_quantizers(self): | |
# we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation) | |
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000) | |
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000) | |
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor') | |
self.box_quantizer = BoxQuantizer( | |
box_quantization_mode, | |
(num_bbox_width_bins, num_bbox_height_bins), | |
) | |
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000) | |
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000) | |
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor') | |
self.coordinates_quantizer = CoordinatesQuantizer( | |
box_quantization_mode, | |
(num_bbox_width_bins, num_bbox_height_bins), | |
) | |
def decode_with_spans(self, tokenizer, token_ids): | |
filtered_tokens = tokenizer.convert_ids_to_tokens( | |
token_ids, skip_special_tokens=False) | |
assert len(filtered_tokens) == len(token_ids) | |
# To avoid mixing byte-level and unicode for byte-level BPT | |
# we need to build string separately for added tokens and byte-level tokens | |
# cf. https://github.com/huggingface/transformers/issues/1133 | |
sub_texts = [] | |
for token in filtered_tokens: | |
if token in self.all_special_tokens: | |
sub_texts.append(token) | |
else: | |
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)): | |
sub_text = tokenizer.convert_tokens_to_string([token]) | |
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)): | |
# Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol | |
# Note: Do not strip sub_text as it may have functional whitespace | |
sub_text = token.replace('▁', ' ') | |
else: | |
raise ValueError(f'type {type(tokenizer)} not supported') | |
sub_texts.append(sub_text) | |
text = '' | |
spans = [] | |
for sub_text in sub_texts: | |
span = (len(text), len(text) + len(sub_text)) # [start index, end index). | |
text += sub_text | |
spans.append(span) | |
# Text format: | |
# 1. T5Tokenizer/T5TokenizerFast: | |
# "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>" | |
# Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False) | |
# 2. BartTokenizer (need to double check): | |
# "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>" | |
# Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False) | |
return text, spans | |
def parse_od_from_text_and_spans( | |
self, | |
text, | |
pattern, | |
image_size, | |
phrase_centric=False | |
): | |
parsed = list(re.finditer(pattern, text)) | |
instances = [] | |
for i in range(len(parsed)): | |
# Prepare instance. | |
instance = {} | |
if phrase_centric: | |
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)] | |
else: | |
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)] | |
instance['bbox'] = self.box_quantizer.dequantize( | |
boxes=torch.tensor(bbox_bins), | |
size=image_size | |
).tolist() | |
if phrase_centric: | |
instance['cat_name'] = parsed[i].group(1).lower().strip() | |
else: | |
instance['cat_name'] = parsed[i].group(5).lower().strip() | |
instances.append(instance) | |
return instances | |
def parse_ocr_from_text_and_spans(self, | |
text, | |
pattern, | |
image_size, | |
area_threshold=-1.0, | |
): | |
bboxes = [] | |
labels = [] | |
text = text.replace('<s>', '') | |
# ocr with regions | |
parsed = re.findall(pattern, text) | |
instances = [] | |
image_width, image_height = image_size | |
for ocr_line in parsed: | |
ocr_content = ocr_line[0] | |
quad_box = ocr_line[1:] | |
quad_box = [int(i) for i in quad_box] | |
quad_box = self.coordinates_quantizer.dequantize( | |
torch.tensor(np.array(quad_box).reshape(-1, 2)), | |
size=image_size | |
).reshape(-1).tolist() | |
if area_threshold > 0: | |
x_coords = [i for i in quad_box[0::2]] | |
y_coords = [i for i in quad_box[1::2]] | |
# apply the Shoelace formula | |
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1))) | |
if area < (image_width * image_height) * area_threshold: | |
continue | |
bboxes.append(quad_box) | |
labels.append(ocr_content) | |
instances.append({ | |
'quad_box': quad_box, | |
'text': ocr_content, | |
}) | |
return instances | |
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size): | |
# ignore <s> </s> and <pad> | |
cur_span = 0 | |
if text.startswith('<s>'): | |
cur_span += 3 | |
text = text.replace('<s>', '') | |
text = text.replace('</s>', '') | |
text = text.replace('<pad>', '') | |
pattern = r"([^<]+(?:<loc_\d+>){4,})" | |
phrases = re.findall(pattern, text) | |
# pattern should be text pattern and od pattern | |
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)' | |
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>' | |
instances = [] | |
for pharse_text in phrases: | |
phrase_text_strip = pharse_text.replace('<ground>', '', 1) | |
phrase_text_strip = pharse_text.replace('<obj>', '', 1) | |
if phrase_text_strip == '': | |
cur_span += len(pharse_text) | |
continue | |
# Prepare instance. | |
instance = {} | |
# parse phrase, get string | |
phrase = re.search(pattern, phrase_text_strip) | |
if phrase is None: | |
cur_span += len(pharse_text) | |
continue | |
# parse bboxes by box_pattern | |
bboxes_parsed = list(re.finditer(box_pattern, pharse_text)) | |
if len(bboxes_parsed) == 0: | |
cur_span += len(pharse_text) | |
continue | |
phrase = phrase.group() | |
# remove leading and trailing spaces | |
phrase = phrase.strip() | |
if phrase in self.black_list_of_phrase_grounding: | |
cur_span += len(pharse_text) | |
continue | |
# a list of list | |
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed] | |
instance['bbox'] = self.box_quantizer.dequantize( | |
boxes=torch.tensor(bbox_bins), | |
size=image_size | |
).tolist() | |
# exclude non-ascii characters | |
phrase = phrase.encode('ascii',errors='ignore').decode('ascii') | |
instance['cat_name'] = phrase | |
instances.append(instance) | |
return instances | |
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False): | |
# temporary parse solution, split by '.' | |
# ignore <s> </s> and <pad> | |
text = text.replace('<s>', '') | |
text = text.replace('</s>', '') | |
text = text.replace('<pad>', '') | |
if allow_empty_phrase: | |
pattern = rf"(?:(?:<loc_\d+>){{4,}})" | |
else: | |
pattern = r"([^<]+(?:<loc_\d+>){4,})" | |
phrases = re.findall(pattern, text) | |
# pattern should be text pattern and od pattern | |
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)' | |
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>' | |
instances = [] | |
for pharse_text in phrases: | |
phrase_text_strip = pharse_text.replace('<ground>', '', 1) | |
phrase_text_strip = pharse_text.replace('<obj>', '', 1) | |
if phrase_text_strip == '' and not allow_empty_phrase: | |
continue | |
# parse phrase, get string | |
phrase = re.search(pattern, phrase_text_strip) | |
if phrase is None: | |
continue | |
phrase = phrase.group() | |
# remove leading and trailing spaces | |
phrase = phrase.strip() | |
# parse bboxes by box_pattern | |
bboxes_parsed = list(re.finditer(box_pattern, pharse_text)) | |
if len(bboxes_parsed) == 0: | |
continue | |
# a list of list | |
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed] | |
bboxes = self.box_quantizer.dequantize( | |
boxes=torch.tensor(bbox_bins), | |
size=image_size | |
).tolist() | |
phrase = phrase.encode('ascii',errors='ignore').decode('ascii') | |
for _bboxes in bboxes: | |
# Prepare instance. | |
instance = {} | |
instance['bbox'] = _bboxes | |
# exclude non-ascii characters | |
instance['cat_name'] = phrase | |
instances.append(instance) | |
return instances | |
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size, | |
allow_empty_phrase=False, | |
polygon_sep_token='<sep>', | |
polygon_start_token='<poly>', | |
polygon_end_token='</poly>', | |
with_box_at_start=False, | |
): | |
# ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>' | |
# ignore <s> </s> and <pad> | |
text = text.replace('<s>', '') | |
text = text.replace('</s>', '') | |
text = text.replace('<pad>', '') | |
if allow_empty_phrase: | |
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})" | |
else: | |
# [^<]+: This part matches one or more characters that are not the < symbol. | |
# The ^ inside the square brackets [] is a negation, meaning it matches anything except <. | |
# | |
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})" | |
phrases = re.findall(pattern, text) | |
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)' | |
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)' | |
# one polygons instance is separated by polygon_start_token and polygon_end_token | |
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}' | |
instances = [] | |
for phrase_text in phrases: | |
# exclude loc_\d+> | |
# need to get span if want to include category score | |
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1) | |
# phrase = phrase.replace('<poly>', '') | |
# phrase = phrase.replace('poly>', '') | |
if phrase_text_strip == '' and not allow_empty_phrase: | |
continue | |
# parse phrase, get string | |
phrase = re.search(phrase_string_pattern, phrase_text_strip) | |
if phrase is None: | |
continue | |
phrase = phrase.group() | |
# remove leading and trailing spaces | |
phrase = phrase.strip() | |
# parse bboxes by box_pattern | |
# split by polygon_start_token and polygon_end_token first using polygons_instance_pattern | |
if polygon_start_token in phrase_text and polygon_end_token in phrase_text: | |
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text)) | |
else: | |
polygons_instances_parsed = [phrase_text] | |
for _polygons_instances_parsed in polygons_instances_parsed: | |
# Prepare instance. | |
instance = {} | |
# polygons_parsed= list(re.finditer(box_pattern, phrase_text)) | |
if isinstance(_polygons_instances_parsed, str): | |
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed)) | |
else: | |
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1))) | |
if len(polygons_parsed) == 0: | |
continue | |
# a list of list (polygon) | |
bbox = [] | |
polygons = [] | |
for _polygon_parsed in polygons_parsed: | |
# group 1: whole <loc_\d+>...</loc_\d+> | |
_polygon = _polygon_parsed.group(1) | |
# parse into list of int | |
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)] | |
if with_box_at_start and len(bbox) == 0: | |
if len(_polygon) > 4: | |
# no valid bbox prediction | |
bbox = _polygon[:4] | |
_polygon = _polygon[4:] | |
else: | |
bbox = [0, 0, 0, 0] | |
# abandon last element if is not paired | |
if len(_polygon) % 2 == 1: | |
_polygon = _polygon[:-1] | |
# reshape into (n, 2) | |
_polygon = self.coordinates_quantizer.dequantize( | |
torch.tensor(np.array(_polygon).reshape(-1, 2)), | |
size=image_size | |
).reshape(-1).tolist() | |
# reshape back | |
polygons.append(_polygon) | |
instance['cat_name'] = phrase | |
instance['polygons'] = polygons | |
if len(bbox) != 0: | |
instance['bbox'] = self.box_quantizer.dequantize( | |
boxes=torch.tensor([bbox]), | |
size=image_size | |
).tolist()[0] | |
instances.append(instance) | |
return instances | |
def __call__( | |
self, | |
text=None, | |
image_size=None, | |
parse_tasks=None, | |
): | |
""" | |
Args: | |
text: model outputs | |
image_size: (width, height) | |
parse_tasks: a list of tasks to parse, if None, parse all tasks. | |
""" | |
if parse_tasks is not None: | |
if isinstance(parse_tasks, str): | |
parse_tasks = [parse_tasks] | |
for _parse_task in parse_tasks: | |
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported' | |
# sequence or text should be provided | |
assert text is not None, 'text should be provided' | |
parsed_dict = { | |
'text': text | |
} | |
for task in self.parse_tasks: | |
if parse_tasks is not None and task not in parse_tasks: | |
continue | |
pattern = self.parse_tasks_configs[task].get('PATTERN', None) | |
if task == 'ocr': | |
instances = self.parse_ocr_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0), | |
) | |
parsed_dict['ocr'] = instances | |
elif task == 'phrase_grounding': | |
instances = self.parse_phrase_grounding_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
) | |
parsed_dict['phrase_grounding'] = instances | |
elif task == 'pure_text': | |
parsed_dict['pure_text'] = text | |
elif task == 'description_with_bboxes': | |
instances = self.parse_description_with_bboxes_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
) | |
parsed_dict['description_with_bboxes'] = instances | |
elif task == 'description_with_polygons': | |
instances = self.parse_description_with_polygons_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
) | |
parsed_dict['description_with_polygons'] = instances | |
elif task == 'polygons': | |
instances = self.parse_description_with_polygons_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
allow_empty_phrase=True, | |
) | |
parsed_dict['polygons'] = instances | |
elif task == 'bboxes': | |
instances = self.parse_description_with_bboxes_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
allow_empty_phrase=True, | |
) | |
parsed_dict['bboxes'] = instances | |
elif task == 'description_with_bboxes_or_polygons': | |
if '<poly>' in text: | |
# only support either polygons or bboxes, not both at the same time | |
instances = self.parse_description_with_polygons_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
) | |
else: | |
instances = self.parse_description_with_bboxes_from_text_and_spans( | |
text, | |
pattern=pattern, | |
image_size=image_size, | |
) | |
parsed_dict['description_with_bboxes_or_polygons'] = instances | |
else: | |
raise ValueError("task {} is not supported".format(task)) | |
return parsed_dict |