File size: 15,463 Bytes
97214bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
""" Florence-2 configuration"""

from typing import Optional

from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

class Florence2VisionConfig(PretrainedConfig):
    r"""

    This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel

    according to the specified arguments, defining the model architecture. Instantiating a configuration with the 

    defaults will yield a similar configuration to that of the Florence2VisionModel architecture.



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.



    Args:

        drop_path_rate (`float`, *optional*, defaults to 0.1):

            The dropout rate of the drop path layer.

        patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):

            The patch size of the image.

        patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):

            The patch stride of the image.

        patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):

            The patch padding of the image.

        patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):

            Whether to apply layer normalization before the patch embedding layer.

        enable_checkpoint (`bool`, *optional*, defaults to False):

            Whether to enable checkpointing.

        dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):

            The dimension of the embedding layer.

        num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):

            The number of attention heads.

        num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):

            The number of groups.

        depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):

            The depth of the model.

        window_size (`int`, *optional*, defaults to 12):

            The window size of the model.

        projection_dim (`int`, *optional*, defaults to 1024):

            The dimension of the projection layer.

        visual_temporal_embedding (`dict`, *optional*):

            The configuration of the visual temporal embedding.

        image_pos_embed (`dict`, *optional*):

            The configuration of the image position embedding.

        image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):

            The source of the image feature.

    Example:



    ```python

    >>> from transformers import Florence2VisionConfig, Florence2VisionModel



    >>> # Initializing a Florence2 Vision style configuration

    >>> configuration = Florence2VisionConfig()



    >>> # Initializing a model (with random weights)

    >>> model = Florence2VisionModel(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "florence2_vision"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(

        self,

        drop_path_rate=0.1,

        patch_size=[7, 3, 3, 3],

        patch_stride=[4, 2, 2, 2],

        patch_padding=[3, 1, 1, 1],

        patch_prenorm=[False, True, True, True],

        enable_checkpoint=False,

        dim_embed=[256, 512, 1024, 2048],

        num_heads=[8, 16, 32, 64],

        num_groups=[8, 16, 32, 64],

        depths=[1, 1, 9, 1],

        window_size=12,

        projection_dim=1024,

        visual_temporal_embedding=None,

        image_pos_embed=None,

        image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],

        **kwargs,

    ):
        self.drop_path_rate = drop_path_rate
        self.patch_size = patch_size
        self.patch_stride = patch_stride
        self.patch_padding = patch_padding
        self.patch_prenorm = patch_prenorm
        self.enable_checkpoint = enable_checkpoint
        self.dim_embed = dim_embed
        self.num_heads = num_heads
        self.num_groups = num_groups
        self.depths = depths
        self.window_size = window_size
        self.projection_dim = projection_dim
        self.visual_temporal_embedding = visual_temporal_embedding
        self.image_pos_embed = image_pos_embed
        self.image_feature_source = image_feature_source

        super().__init__(**kwargs)



class Florence2LanguageConfig(PretrainedConfig):
    r"""

    This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART

    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the

    defaults will yield a similar configuration to that of the BART

    [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.





    Args:

        vocab_size (`int`, *optional*, defaults to 51289):

            Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the

            `inputs_ids` passed when calling [`Florence2LanguageModel`].

        d_model (`int`, *optional*, defaults to 1024):

            Dimensionality of the layers and the pooler layer.

        encoder_layers (`int`, *optional*, defaults to 12):

            Number of encoder layers.

        decoder_layers (`int`, *optional*, defaults to 12):

            Number of decoder layers.

        encoder_attention_heads (`int`, *optional*, defaults to 16):

            Number of attention heads for each attention layer in the Transformer encoder.

        decoder_attention_heads (`int`, *optional*, defaults to 16):

            Number of attention heads for each attention layer in the Transformer decoder.

        decoder_ffn_dim (`int`, *optional*, defaults to 4096):

            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.

        encoder_ffn_dim (`int`, *optional*, defaults to 4096):

            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.

        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):

            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,

            `"relu"`, `"silu"` and `"gelu_new"` are supported.

        dropout (`float`, *optional*, defaults to 0.1):

            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

        attention_dropout (`float`, *optional*, defaults to 0.0):

            The dropout ratio for the attention probabilities.

        activation_dropout (`float`, *optional*, defaults to 0.0):

            The dropout ratio for activations inside the fully connected layer.

        classifier_dropout (`float`, *optional*, defaults to 0.0):

            The dropout ratio for classifier.

        max_position_embeddings (`int`, *optional*, defaults to 1024):

            The maximum sequence length that this model might ever be used with. Typically set this to something large

            just in case (e.g., 512 or 1024 or 2048).

        init_std (`float`, *optional*, defaults to 0.02):

            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

        encoder_layerdrop (`float`, *optional*, defaults to 0.0):

            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)

            for more details.

        decoder_layerdrop (`float`, *optional*, defaults to 0.0):

            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)

            for more details.

        scale_embedding (`bool`, *optional*, defaults to `False`):

            Scale embeddings by diving by sqrt(d_model).

        use_cache (`bool`, *optional*, defaults to `True`):

            Whether or not the model should return the last key/values attentions (not used by all models).

        num_labels (`int`, *optional*, defaults to 3):

            The number of labels to use in [`Florence2LanguageForSequenceClassification`].

        forced_eos_token_id (`int`, *optional*, defaults to 2):

            The id of the token to force as the last generated token when `max_length` is reached. Usually set to

            `eos_token_id`.



    Example:



    ```python

    >>> from transformers import Florence2LanguageConfig, Florence2LanguageModel



    >>> # Initializing a Florence2 Language style configuration

    >>> configuration = Florence2LanguageConfig()



    >>> # Initializing a model (with random weights)

    >>> model = Florence2LangaugeModel(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "florence2_language"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}

    def __init__(

        self,

        vocab_size=51289,

        max_position_embeddings=1024,

        encoder_layers=12,

        encoder_ffn_dim=4096,

        encoder_attention_heads=16,

        decoder_layers=12,

        decoder_ffn_dim=4096,

        decoder_attention_heads=16,

        encoder_layerdrop=0.0,

        decoder_layerdrop=0.0,

        activation_function="gelu",

        d_model=1024,

        dropout=0.1,

        attention_dropout=0.0,

        activation_dropout=0.0,

        init_std=0.02,

        classifier_dropout=0.0,

        scale_embedding=False,

        use_cache=True,

        num_labels=3,

        pad_token_id=1,

        bos_token_id=0,

        eos_token_id=2,

        is_encoder_decoder=True,

        decoder_start_token_id=2,

        forced_eos_token_id=2,

        **kwargs,

    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.classifier_dropout = classifier_dropout
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True

        super().__init__(
            num_labels=num_labels,
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=decoder_start_token_id,
            forced_eos_token_id=forced_eos_token_id,
            **kwargs,
        )

        # ensure backward compatibility for BART CNN models
        if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
            self.forced_bos_token_id = self.bos_token_id
            warnings.warn(
                f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
                "The config can simply be saved and uploaded again to be fixed."
            )

class Florence2Config(PretrainedConfig):
    r"""

    This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an

    Florence-2 model according to the specified arguments, defining the model architecture. 



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.



    Args:

        vision_config (`Florence2VisionConfig`,  *optional*):

            Custom vision config or dict

        text_config (`Union[AutoConfig, dict]`, *optional*):

            The config object of the text backbone. 

        ignore_index (`int`, *optional*, defaults to -100):

            The ignore index for the loss function.

        vocab_size (`int`, *optional*, defaults to 51289):

            Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the

            `inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]

        projection_dim (`int`, *optional*, defaults to 1024):

            Dimension of the multimodal projection space.



    Example:



    ```python

    >>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig



    >>> # Initializing a clip-like vision config

    >>> vision_config = CLIPVisionConfig()



    >>> # Initializing a Bart config

    >>> text_config = BartConfig()



    >>> # Initializing a Florence-2 configuration

    >>> configuration = Florence2Config(vision_config, text_config)



    >>> # Initializing a model from the florence-2 configuration

    >>> model = Florence2ForConditionalGeneration(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "florence2"
    is_composition = False

    def __init__(

        self,

        vision_config=None,

        text_config=None,

        ignore_index=-100,

        vocab_size=51289,

        projection_dim=1024,

        **kwargs,

    ):
        self.ignore_index = ignore_index
        self.vocab_size = vocab_size
        self.projection_dim = projection_dim
        if vision_config is not None:
            vision_config = PretrainedConfig(**vision_config)
        self.vision_config = vision_config
        self.vocab_size = self.vocab_size

        self.text_config = text_config
        if text_config is not None:
            self.text_config = Florence2LanguageConfig(**text_config)


        super().__init__(**kwargs)