import streamlit as st import os from transformers import AutoTokenizer, AutoModelForCausalLM st.set_page_config(page_title="GPT-2 Text Generator", layout="centered") #tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2") #model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2") tokenizer = AutoTokenizer.from_pretrained("ahmadmac/DistillGPT2-CSV") model = AutoModelForCausalLM.from_pretrained("ahmadmac/DistillGPT2-CSV") #google_api_key= import google.generativeai as genai GOOGLE_API_KEY=os.environ["google_api_key"] genai.configure(api_key=GOOGLE_API_KEY) # def generate_text(prompt): # inputs = tokenizer(prompt, return_tensors="pt") # outputs = model.generate(**inputs, max_length=50) # generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # return generated_text gemini_model = genai.GenerativeModel('gemini-1.5-pro') def generate_text(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") trained_output = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) trained_response = tokenizer.decode(trained_output[0], skip_special_tokens=True) prompt = f"Improve this text to make it clearer and more concise: {trained_response}" generated_text = gemini_model.generate_content(prompt) return generated_text st.title("GPT-2 Text Generator") st.write("Enter a prompt to generate text using GPT-2") user_input = st.text_input("Prompt") if st.button("Generate"): if user_input: with st.spinner("Generating..."): generated_text = generate_text(user_input) st.write(generated_text.text) else: st.warning("Please enter a prompt")