import streamlit as st import pandas as pd import numpy as np import pickle import json # Load All Files with open('prepmod_dt.pkl', 'rb') as file_1: prepmod_dt = pickle.load(file_1) with open('Drop_Columns.txt', 'r') as file_2: Drop_Columns = json.load(file_2) def run(): with st.form(key='form_forest_fire'): day = st.slider('Enter Date',min_value=1,max_value=31,value=26) month = st.slider('Enter Month',min_value=1, max_value=12,value=7) year = st.number_input('Enter Year',min_value=2012,max_value=2012,value=2012) st.markdown('---') Temperature = st.number_input('Enter Temperature',min_value=22,max_value=42,value=36) RH = st.number_input('Enter RH (Relative Humidity) in %',min_value=21,max_value=90,value=53) Ws = st.number_input('Enter Wind speed in km/h',min_value=6,max_value=29,value=19) Rain = st.number_input('Enter Rainfall in mm',step=0.01,format="%.2f",min_value=0.00,max_value=16.80,value=0.00) st.markdown('---') FFMC = st.number_input('Fine Fuel Moisture Code (FFMC) index',step=0.1,format="%.2f",min_value=28.60,max_value=92.50,value=89.20) DMC = st.number_input('Duff Moisture Code (DMC) index',step=0.1,format="%.2f",min_value=1.10,max_value=65.90,value=17.10) DC = st.number_input('Drought Code (DC) index',step=0.1,format="%.2f",min_value=7.00,max_value=220.40,value=98.60) ISI = st.number_input('Initial Spread Index (ISI) index',step=0.1,format="%.2f",min_value=0.00,max_value=18.50,value=10.00) BUI = st.number_input('Buildup Index (BUI) index',step=0.1,format="%.2f",min_value=1.10,max_value=68.00,value=23.90) FWI = st.number_input('Fire Weather Index (FWI) Index',step=0.1,format="%.2f",min_value=0.00,max_value=31.10,value=15.30) submitted = st.form_submit_button('Is there a forest fire?') df_inf = { 'day': day, 'month': month, 'year': year, 'Temperature': Temperature, 'RH': RH, 'Ws': Ws, 'Rain': Rain, 'FFMC': FFMC, 'DMC': DMC, 'DC': DC, 'ISI': ISI, 'BUI':BUI, 'FWI':FWI } df_inf = pd.DataFrame([df_inf]) # Data Inference df_inf_copy = df_inf.copy() # Removing unnecessary features df_inf_final = df_inf_copy.drop(Drop_Columns,axis=1).sort_index() st.dataframe(df_inf_final) if submitted: # Predict using DecisionTree y_pred_inf = prepmod_dt.predict(df_inf_final) st.write('# Is there a forest fire?') if y_pred_inf == 0: st.subheader('There is No Forest Fire') else: st.subheader('There is a Forest Fire') if __name__ == '__main__': run()