Spaces:
Sleeping
Sleeping
add video process tabs
Browse files- gradio_app.py +100 -56
gradio_app.py
CHANGED
|
@@ -6,22 +6,32 @@ import torchaudio.transforms as T
|
|
| 6 |
import soundfile as sf
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
|
|
|
| 9 |
import look2hear.models
|
| 10 |
|
| 11 |
-
# Setup device
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
# Load models
|
| 15 |
-
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache")
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache")
|
| 19 |
-
sep_model.to(device).eval()
|
| 20 |
|
| 21 |
TARGET_SR = 16000
|
| 22 |
MAX_SPEAKERS = 4
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
@spaces.GPU()
|
| 26 |
def separate_dnr(audio_file):
|
| 27 |
audio, sr = torchaudio.load(audio_file)
|
|
@@ -30,22 +40,22 @@ def separate_dnr(audio_file):
|
|
| 30 |
with torch.no_grad():
|
| 31 |
dialog, effect, music = dnr_model(audio[None])
|
| 32 |
|
| 33 |
-
# Unique output folder
|
| 34 |
session_id = uuid.uuid4().hex[:8]
|
| 35 |
output_dir = os.path.join("output_dnr", session_id)
|
| 36 |
os.makedirs(output_dir, exist_ok=True)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
torchaudio.save(
|
| 43 |
-
torchaudio.save(
|
| 44 |
-
torchaudio.save(
|
| 45 |
|
| 46 |
-
return
|
| 47 |
|
| 48 |
-
# --- Speaker Separation Function ---
|
| 49 |
@spaces.GPU()
|
| 50 |
def separate_speakers(audio_path):
|
| 51 |
waveform, original_sr = torchaudio.load(audio_path)
|
|
@@ -57,11 +67,8 @@ def separate_speakers(audio_path):
|
|
| 57 |
audio_input = waveform.unsqueeze(0).to(device)
|
| 58 |
|
| 59 |
with torch.no_grad():
|
| 60 |
-
ests_speech = sep_model(audio_input)
|
| 61 |
-
|
| 62 |
-
ests_speech = ests_speech.squeeze(0)
|
| 63 |
|
| 64 |
-
# Unique output folder
|
| 65 |
session_id = uuid.uuid4().hex[:8]
|
| 66 |
output_dir = os.path.join("output_sep", session_id)
|
| 67 |
os.makedirs(output_dir, exist_ok=True)
|
|
@@ -69,8 +76,7 @@ def separate_speakers(audio_path):
|
|
| 69 |
output_files = []
|
| 70 |
for i in range(ests_speech.shape[0]):
|
| 71 |
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
| 72 |
-
|
| 73 |
-
sf.write(path, audio_np.T, TARGET_SR) # Transpose only if shape is [T, C], usually not needed
|
| 74 |
output_files.append(path)
|
| 75 |
|
| 76 |
updates = []
|
|
@@ -81,7 +87,57 @@ def separate_speakers(audio_path):
|
|
| 81 |
updates.append(gr.update(value=None, visible=False))
|
| 82 |
return updates
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
with gr.Blocks() as demo:
|
| 86 |
gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
|
| 87 |
gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")
|
|
@@ -97,51 +153,39 @@ with gr.Blocks() as demo:
|
|
| 97 |
</a>
|
| 98 |
</div>
|
| 99 |
""")
|
| 100 |
-
with gr.Tabs():
|
| 101 |
-
# --- Tab 1: DnR ---
|
| 102 |
-
with gr.Tab("Dialog/Effects/Music Separation (DnR)"):
|
| 103 |
-
gr.Markdown("### Separate Dialog, Effects, and Music from Mixed Audio")
|
| 104 |
-
|
| 105 |
-
dnr_input = gr.Audio(type="filepath", label="Upload Audio File")
|
| 106 |
-
dnr_button = gr.Button("Separate Audio")
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
gr.Examples(
|
| 109 |
examples = ["./test/test_mixture_466.wav"],
|
| 110 |
inputs = dnr_input
|
| 111 |
)
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
dnr_output_effect = gr.Audio(label="Effects", type="filepath")
|
| 115 |
-
dnr_output_music = gr.Audio(label="Music", type="filepath")
|
| 116 |
-
|
| 117 |
-
dnr_button.click(
|
| 118 |
-
fn=separate_dnr,
|
| 119 |
-
inputs=dnr_input,
|
| 120 |
-
outputs=[dnr_output_dialog, dnr_output_effect, dnr_output_music]
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
# --- Tab 2: Speaker Separation ---
|
| 124 |
-
with gr.Tab("Speaker Separation"):
|
| 125 |
-
gr.Markdown("### Separate Individual Speakers from Mixed Speech")
|
| 126 |
-
|
| 127 |
sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
|
| 128 |
-
|
| 129 |
-
|
| 130 |
gr.Examples(
|
| 131 |
examples = ["./test/mix.wav"],
|
| 132 |
inputs = sep_input
|
| 133 |
)
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
)
|
| 145 |
|
| 146 |
if __name__ == "__main__":
|
| 147 |
-
demo.launch()
|
|
|
|
| 6 |
import soundfile as sf
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
|
| 10 |
import look2hear.models
|
| 11 |
|
|
|
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
# Load models
|
| 15 |
+
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache").to(device).eval()
|
| 16 |
+
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache").to(device).eval()
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
TARGET_SR = 16000
|
| 19 |
MAX_SPEAKERS = 4
|
| 20 |
|
| 21 |
+
def extract_audio_from_video(video_path):
|
| 22 |
+
video = VideoFileClip(video_path)
|
| 23 |
+
session_id = uuid.uuid4().hex[:8]
|
| 24 |
+
audio_path = f"temp_audio/{session_id}.wav"
|
| 25 |
+
os.makedirs("temp_audio", exist_ok=True)
|
| 26 |
+
video.audio.write_audiofile(audio_path, fps=44100, verbose=False, logger=None)
|
| 27 |
+
return audio_path, video
|
| 28 |
+
|
| 29 |
+
def attach_audio_to_video(original_video, audio_path, out_path):
|
| 30 |
+
new_audio = AudioFileClip(audio_path)
|
| 31 |
+
new_video = original_video.set_audio(new_audio)
|
| 32 |
+
new_video.write_videofile(out_path, audio_codec='aac', verbose=False, logger=None)
|
| 33 |
+
return out_path
|
| 34 |
+
|
| 35 |
@spaces.GPU()
|
| 36 |
def separate_dnr(audio_file):
|
| 37 |
audio, sr = torchaudio.load(audio_file)
|
|
|
|
| 40 |
with torch.no_grad():
|
| 41 |
dialog, effect, music = dnr_model(audio[None])
|
| 42 |
|
|
|
|
| 43 |
session_id = uuid.uuid4().hex[:8]
|
| 44 |
output_dir = os.path.join("output_dnr", session_id)
|
| 45 |
os.makedirs(output_dir, exist_ok=True)
|
| 46 |
|
| 47 |
+
paths = {
|
| 48 |
+
"dialog": os.path.join(output_dir, "dialog.wav"),
|
| 49 |
+
"effect": os.path.join(output_dir, "effect.wav"),
|
| 50 |
+
"music": os.path.join(output_dir, "music.wav"),
|
| 51 |
+
}
|
| 52 |
|
| 53 |
+
torchaudio.save(paths["dialog"], dialog.cpu(), sr)
|
| 54 |
+
torchaudio.save(paths["effect"], effect.cpu(), sr)
|
| 55 |
+
torchaudio.save(paths["music"], music.cpu(), sr)
|
| 56 |
|
| 57 |
+
return paths["dialog"], paths["effect"], paths["music"]
|
| 58 |
|
|
|
|
| 59 |
@spaces.GPU()
|
| 60 |
def separate_speakers(audio_path):
|
| 61 |
waveform, original_sr = torchaudio.load(audio_path)
|
|
|
|
| 67 |
audio_input = waveform.unsqueeze(0).to(device)
|
| 68 |
|
| 69 |
with torch.no_grad():
|
| 70 |
+
ests_speech = sep_model(audio_input).squeeze(0)
|
|
|
|
|
|
|
| 71 |
|
|
|
|
| 72 |
session_id = uuid.uuid4().hex[:8]
|
| 73 |
output_dir = os.path.join("output_sep", session_id)
|
| 74 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
| 76 |
output_files = []
|
| 77 |
for i in range(ests_speech.shape[0]):
|
| 78 |
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
| 79 |
+
sf.write(path, ests_speech[i].cpu().numpy(), TARGET_SR)
|
|
|
|
| 80 |
output_files.append(path)
|
| 81 |
|
| 82 |
updates = []
|
|
|
|
| 87 |
updates.append(gr.update(value=None, visible=False))
|
| 88 |
return updates
|
| 89 |
|
| 90 |
+
@spaces.GPU()
|
| 91 |
+
def separate_dnr_video(video_path):
|
| 92 |
+
audio_path, video = extract_audio_from_video(video_path)
|
| 93 |
+
dialog_path, effect_path, music_path = separate_dnr(audio_path)
|
| 94 |
+
|
| 95 |
+
session_id = uuid.uuid4().hex[:8]
|
| 96 |
+
output_dir = os.path.join("output_dnr_video", session_id)
|
| 97 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 98 |
+
|
| 99 |
+
dialog_video = attach_audio_to_video(video, dialog_path, os.path.join(output_dir, "dialog_video.mp4"))
|
| 100 |
+
effect_video = attach_audio_to_video(video, effect_path, os.path.join(output_dir, "effect_video.mp4"))
|
| 101 |
+
music_video = attach_audio_to_video(video, music_path, os.path.join(output_dir, "music_video.mp4"))
|
| 102 |
+
|
| 103 |
+
return dialog_video, effect_video, music_video
|
| 104 |
+
|
| 105 |
+
@spaces.GPU()
|
| 106 |
+
def separate_speakers_video(video_path):
|
| 107 |
+
audio_path, video = extract_audio_from_video(video_path)
|
| 108 |
+
|
| 109 |
+
waveform, original_sr = torchaudio.load(audio_path)
|
| 110 |
+
if original_sr != TARGET_SR:
|
| 111 |
+
waveform = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR)(waveform)
|
| 112 |
+
|
| 113 |
+
if waveform.dim() == 1:
|
| 114 |
+
waveform = waveform.unsqueeze(0)
|
| 115 |
+
audio_input = waveform.unsqueeze(0).to(device)
|
| 116 |
+
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
ests_speech = sep_model(audio_input).squeeze(0)
|
| 119 |
+
|
| 120 |
+
session_id = uuid.uuid4().hex[:8]
|
| 121 |
+
output_dir = os.path.join("output_sep_video", session_id)
|
| 122 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 123 |
+
|
| 124 |
+
output_videos = []
|
| 125 |
+
for i in range(ests_speech.shape[0]):
|
| 126 |
+
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
| 127 |
+
sf.write(path, ests_speech[i].cpu().numpy(), TARGET_SR)
|
| 128 |
+
video_path = os.path.join(output_dir, f"speaker_{i+1}_video.mp4")
|
| 129 |
+
attach_audio_to_video(video, path, video_path)
|
| 130 |
+
output_videos.append(video_path)
|
| 131 |
+
|
| 132 |
+
updates = []
|
| 133 |
+
for i in range(MAX_SPEAKERS):
|
| 134 |
+
if i < len(output_videos):
|
| 135 |
+
updates.append(gr.update(value=output_videos[i], visible=True, label=f"Speaker {i+1}"))
|
| 136 |
+
else:
|
| 137 |
+
updates.append(gr.update(value=None, visible=False))
|
| 138 |
+
return updates
|
| 139 |
+
|
| 140 |
+
# --- Gradio UI ---
|
| 141 |
with gr.Blocks() as demo:
|
| 142 |
gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
|
| 143 |
gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")
|
|
|
|
| 153 |
</a>
|
| 154 |
</div>
|
| 155 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
with gr.Tabs():
|
| 158 |
+
with gr.Tab("Audio DnR"):
|
| 159 |
+
dnr_input = gr.Audio(type="filepath", label="Upload Audio")
|
| 160 |
+
dnr_btn = gr.Button("Separate")
|
| 161 |
gr.Examples(
|
| 162 |
examples = ["./test/test_mixture_466.wav"],
|
| 163 |
inputs = dnr_input
|
| 164 |
)
|
| 165 |
+
dnr_output = [gr.Audio(label=l) for l in ["Dialog", "Effects", "Music"]]
|
| 166 |
+
dnr_btn.click(separate_dnr, inputs=dnr_input, outputs=dnr_output)
|
| 167 |
|
| 168 |
+
with gr.Tab("Audio Speaker Separation"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
|
| 170 |
+
sep_btn = gr.Button("Separate Speakers")
|
|
|
|
| 171 |
gr.Examples(
|
| 172 |
examples = ["./test/mix.wav"],
|
| 173 |
inputs = sep_input
|
| 174 |
)
|
| 175 |
+
sep_outputs = [gr.Audio(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
|
| 176 |
+
sep_btn.click(separate_speakers, inputs=sep_input, outputs=sep_outputs)
|
| 177 |
|
| 178 |
+
with gr.Tab("Video DnR"):
|
| 179 |
+
vdnr_input = gr.Video(label="Upload Video")
|
| 180 |
+
vdnr_btn = gr.Button("Separate Audio Tracks")
|
| 181 |
+
vdnr_output = [gr.Video(label=l) for l in ["Dialog Video", "Effects Video", "Music Video"]]
|
| 182 |
+
vdnr_btn.click(separate_dnr_video, inputs=vdnr_input, outputs=vdnr_output)
|
| 183 |
|
| 184 |
+
with gr.Tab("Video Speaker Separation"):
|
| 185 |
+
vsep_input = gr.Video(label="Upload Video")
|
| 186 |
+
vsep_btn = gr.Button("Separate Speakers")
|
| 187 |
+
vsep_outputs = [gr.Video(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
|
| 188 |
+
vsep_btn.click(separate_speakers_video, inputs=vsep_input, outputs=vsep_outputs)
|
| 189 |
|
| 190 |
if __name__ == "__main__":
|
| 191 |
+
demo.launch()
|