import streamlit as st import re from langdetect import detect from transformers import pipeline import nltk from docx import Document import io # Download required NLTK resources nltk.download('punkt') # Updated tone categories tone_categories = { "Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis"], "Critical": ["corrupt", "oppression", "failure", "repression", "unjust"], "Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief"], "Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change"], "Informative": ["announcement", "event", "scheduled", "update", "details"], "Positive": ["progress", "unity", "hope", "victory", "solidarity"], "Urgent": ["urgent", "violence", "disappearances", "forced", "killing", "concern", "crisis"], "Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust"], "Negative": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief"], "Empowering": ["rise", "resist", "mobilize", "inspire", "courage", "change"], "Neutral": ["announcement", "event", "scheduled", "update", "details", "protest on"], "Hopeful": ["progress", "unity", "hope", "victory", "together", "solidarity"] } # Updated frame categories frame_categories = { "Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"], "Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"], "Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"], "Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"], "Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"], "Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"], "Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"], "Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"], "Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"], "Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"], "Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"], "Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"], "Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"], "Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"], "Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"] } # Detect language def detect_language(text): try: return detect(text) except Exception as e: st.write(f"Error detecting language: {e}") return "unknown" # Analyze tone based on predefined categories def analyze_tone(text): detected_tones = set() for category, keywords in tone_categories.items(): if any(word in text.lower() for word in keywords): detected_tones.add(category) if not detected_tones: tone_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") model_result = tone_model(text, candidate_labels=list(tone_categories.keys())) detected_tones.update(model_result["labels"][:2]) return list(detected_tones) # Extract hashtags def extract_hashtags(text): return re.findall(r"#\w+", text) # Extract frames based on predefined categories def extract_frames(text): detected_frames = set() for category, keywords in frame_categories.items(): if any(word in text.lower() for word in keywords): detected_frames.add(category) if not detected_frames: frame_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") model_result = frame_model(text, candidate_labels=list(frame_categories.keys())) detected_frames.update(model_result["labels"][:2]) return list(detected_frames) # Extract captions from DOCX file based on "Post X" def extract_captions_from_docx(docx_file): doc = Document(docx_file) captions = {} current_post = None for para in doc.paragraphs: text = para.text.strip() if re.match(r"Post \d+", text, re.IGNORECASE): current_post = text captions[current_post] = [] elif current_post: captions[current_post].append(text) return {post: " ".join(lines) for post, lines in captions.items() if lines} # Generate a DOCX file in-memory with full captions def generate_docx(output_data): doc = Document() doc.add_heading('Activism Message Analysis', 0) for index, (caption, result) in enumerate(output_data.items(), start=1): doc.add_heading(f"{index}. {caption}", level=1) doc.add_paragraph("Full Caption:") doc.add_paragraph(result['Full Caption'], style="Quote") doc.add_paragraph(f"Language: {result['Language']}") doc.add_paragraph(f"Tone of Caption: {', '.join(result['Tone of Caption'])}") doc.add_paragraph(f"Number of Hashtags: {result['Hashtag Count']}") doc.add_paragraph(f"Hashtags Found: {', '.join(result['Hashtags'])}") doc.add_heading('Frames:', level=2) for frame in result['Frames']: doc.add_paragraph(frame) doc_io = io.BytesIO() doc.save(doc_io) doc_io.seek(0) return doc_io # Streamlit app st.title('AI-Powered Activism Message Analyzer with Intersectionality') st.write("Enter the text to analyze or upload a DOCX file containing captions:") # Text Input input_text = st.text_area("Input Text", height=200) # File Upload uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"]) # Initialize output dictionary output_data = {} if input_text: language = detect_language(input_text) tone = analyze_tone(input_text) hashtags = extract_hashtags(input_text) frames = extract_frames(input_text) output_data["Manual Input"] = { 'Full Caption': input_text, 'Language': language, 'Tone of Caption': tone, 'Hashtags': hashtags, 'Hashtag Count': len(hashtags), 'Frames': frames } st.success("Analysis completed for text input.") if uploaded_file: captions = extract_captions_from_docx(uploaded_file) for caption, text in captions.items(): language = detect_language(text) tone = analyze_tone(text) hashtags = extract_hashtags(text) frames = extract_frames(text) output_data[caption] = { 'Full Caption': text, 'Language': language, 'Tone of Caption': tone, 'Hashtags': hashtags, 'Hashtag Count': len(hashtags), 'Frames': frames } st.success(f"Analysis completed for {len(captions)} posts from the DOCX file.") # Display results if output_data: with st.expander("Generated Output"): st.subheader("Analysis Results") for index, (caption, result) in enumerate(output_data.items(), start=1): st.write(f"### {index}. {caption}") st.write("**Full Caption:**") st.write(f"> {result['Full Caption']}") st.write(f"**Language**: {result['Language']}") st.write(f"**Tone of Caption**: {', '.join(result['Tone of Caption'])}") st.write(f"**Number of Hashtags**: {result['Hashtag Count']}") st.write(f"**Hashtags Found:** {', '.join(result['Hashtags'])}") st.write("**Frames**:") for frame in result['Frames']: st.write(f"- {frame}") docx_file = generate_docx(output_data) if docx_file: st.download_button( label="Download Analysis as DOCX", data=docx_file, file_name="activism_message_analysis.docx", mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" )