new ui
Browse files- README.md +73 -5
- app.py +203 -38
- requirements.txt +3 -1
README.md
CHANGED
|
@@ -1,12 +1,80 @@
|
|
| 1 |
---
|
| 2 |
-
title: HT
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.39.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: HT-Demucs Spleeter Music Stem Separation - AI Audio Source Separation 2025
|
| 3 |
+
emoji: π΅
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.39.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
short_description: HT-Demucs and Spleeter AI music stem separation - separate vocals, drums, bass, piano, other instruments
|
| 12 |
+
tags:
|
| 13 |
+
- music
|
| 14 |
+
- audio
|
| 15 |
+
- stem-separation
|
| 16 |
+
- htdemucs
|
| 17 |
+
- spleeter
|
| 18 |
+
- ai
|
| 19 |
+
- machine-learning
|
| 20 |
+
- vocals
|
| 21 |
+
- drums
|
| 22 |
+
- bass
|
| 23 |
+
- piano
|
| 24 |
+
- audio-processing
|
| 25 |
---
|
| 26 |
|
| 27 |
+
# π΅ HT-Demucs Spleeter Music Stem Separation - AI Audio Source Separation
|
| 28 |
+
|
| 29 |
+
A powerful AI-powered music stem separation tool that runs both **HT-Demucs** and **Spleeter** models. Choose which models to run or compare both simultaneously to get the best quality stems for vocals, drums, bass, piano, and other instruments.
|
| 30 |
+
|
| 31 |
+
## π Features
|
| 32 |
+
|
| 33 |
+
### HT-Demucs Model
|
| 34 |
+
- **Drums** - High-quality drum separation
|
| 35 |
+
- **Bass** - Clean bass line extraction
|
| 36 |
+
- **Other** - All other instruments
|
| 37 |
+
- **Vocals** - Vocal track isolation
|
| 38 |
+
|
| 39 |
+
### Spleeter Model
|
| 40 |
+
- **Vocals** - Vocal track isolation
|
| 41 |
+
- **Drums** - Drum track separation
|
| 42 |
+
- **Bass** - Bass line extraction
|
| 43 |
+
- **Other** - Other instruments
|
| 44 |
+
- **Piano** - πΉ **Piano separation (unique to Spleeter!)**
|
| 45 |
+
|
| 46 |
+
## π― Why Use Both Models?
|
| 47 |
+
|
| 48 |
+
- **HT-Demucs**: Excellent for general stem separation with high quality
|
| 49 |
+
- **Spleeter**: Provides piano separation that HT-Demucs doesn't offer
|
| 50 |
+
- **Comparison**: Side-by-side results help you choose the best quality stems
|
| 51 |
+
- **Flexibility**: Get the best of both worlds!
|
| 52 |
+
|
| 53 |
+
## π οΈ How to Use
|
| 54 |
+
|
| 55 |
+
1. Upload your audio file (MP3, WAV, etc.)
|
| 56 |
+
2. **Choose your models**: Select HT-Demucs, Spleeter, or both (default: both)
|
| 57 |
+
3. Click "Separate Music"
|
| 58 |
+
4. Compare the results and download the best stems for your project
|
| 59 |
+
|
| 60 |
+
## π Model Comparison
|
| 61 |
+
|
| 62 |
+
| Feature | HT-Demucs | Spleeter |
|
| 63 |
+
|---------|-----------|----------|
|
| 64 |
+
| Vocals | β
High Quality | β
High Quality |
|
| 65 |
+
| Drums | β
High Quality | β
High Quality |
|
| 66 |
+
| Bass | β
High Quality | β
High Quality |
|
| 67 |
+
| Other | β
High Quality | β
High Quality |
|
| 68 |
+
| Piano | β Not Available | β
**Available** |
|
| 69 |
+
| Speed | β‘ Fast | β‘ Fast |
|
| 70 |
+
|
| 71 |
+
## πΌ Perfect For
|
| 72 |
+
|
| 73 |
+
- Music producers comparing stem quality
|
| 74 |
+
- Remix artists needing piano separation
|
| 75 |
+
- Audio engineers testing different models
|
| 76 |
+
- Anyone who wants the best possible stem separation
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
|
| 80 |
+
*Powered by HT-Demucs and Spleeter - Choose your best stems!*
|
app.py
CHANGED
|
@@ -6,28 +6,42 @@ import torchaudio
|
|
| 6 |
from demucs.pretrained import get_model
|
| 7 |
from demucs.apply import apply_model
|
| 8 |
import os
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 13 |
print(f"Using device: {device}")
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
"""
|
| 23 |
-
Separates an audio file into drums, bass, other, and vocals.
|
| 24 |
-
Returns FILE PATHS
|
| 25 |
"""
|
| 26 |
if audio_path is None:
|
| 27 |
return None, None, None, None, "Please upload an audio file."
|
| 28 |
|
| 29 |
try:
|
| 30 |
-
print(f"Loading audio from: {audio_path}")
|
| 31 |
wav, sr = torchaudio.load(audio_path)
|
| 32 |
|
| 33 |
if wav.shape[0] == 1:
|
|
@@ -36,14 +50,14 @@ def separate_stems(audio_path):
|
|
| 36 |
|
| 37 |
wav = wav.to(device)
|
| 38 |
|
| 39 |
-
print("Applying the separation model...")
|
| 40 |
with torch.no_grad():
|
| 41 |
-
sources = apply_model(
|
| 42 |
-
print("Separation complete.")
|
| 43 |
|
| 44 |
# Save stems temporarily
|
| 45 |
stem_names = ["drums", "bass", "other", "vocals"]
|
| 46 |
-
output_dir = "
|
| 47 |
os.makedirs(output_dir, exist_ok=True)
|
| 48 |
|
| 49 |
output_paths = []
|
|
@@ -51,38 +65,189 @@ def separate_stems(audio_path):
|
|
| 51 |
out_path = os.path.join(output_dir, f"{name}.wav")
|
| 52 |
torchaudio.save(out_path, sources[i].cpu(), sr)
|
| 53 |
output_paths.append(out_path)
|
| 54 |
-
print(f"β
|
| 55 |
|
| 56 |
-
return output_paths[0], output_paths[1], output_paths[2], output_paths[3], "β
|
| 57 |
|
| 58 |
except Exception as e:
|
| 59 |
-
print(f"Error: {e}")
|
| 60 |
-
return None, None, None, None, f"β Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
# --- Gradio UI ---
|
| 63 |
print("Creating Gradio interface...")
|
| 64 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 65 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
with gr.Column():
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
with gr.Column():
|
| 74 |
-
gr.Markdown("###
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
separate_button.click(
|
| 81 |
-
fn=
|
| 82 |
-
inputs=audio_input,
|
| 83 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
| 6 |
from demucs.pretrained import get_model
|
| 7 |
from demucs.apply import apply_model
|
| 8 |
import os
|
| 9 |
+
import tempfile
|
| 10 |
+
import numpy as np
|
| 11 |
+
from spleeter.separator import Separator
|
| 12 |
+
from spleeter.audio.adapter import AudioAdapter
|
| 13 |
+
import warnings
|
| 14 |
+
warnings.filterwarnings("ignore")
|
| 15 |
+
|
| 16 |
+
# --- Setup the models ---
|
| 17 |
+
print("Setting up models...")
|
| 18 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 19 |
print(f"Using device: {device}")
|
| 20 |
|
| 21 |
+
# Load HT-Demucs model
|
| 22 |
+
print("Loading HT-Demucs model...")
|
| 23 |
+
htdemucs_model = get_model(name="htdemucs")
|
| 24 |
+
htdemucs_model = htdemucs_model.to(device)
|
| 25 |
+
htdemucs_model.eval()
|
| 26 |
+
print("HT-Demucs model loaded successfully.")
|
| 27 |
+
|
| 28 |
+
# Load Spleeter model (5stems-16kHz)
|
| 29 |
+
print("Loading Spleeter model...")
|
| 30 |
+
spleeter_separator = Separator('spleeter:5stems-16kHz')
|
| 31 |
+
spleeter_audio_adapter = AudioAdapter.default()
|
| 32 |
+
print("Spleeter model loaded successfully.")
|
| 33 |
+
|
| 34 |
+
# --- HT-Demucs separation function ---
|
| 35 |
+
def separate_with_htdemucs(audio_path):
|
| 36 |
"""
|
| 37 |
+
Separates an audio file using HT-Demucs into drums, bass, other, and vocals.
|
| 38 |
+
Returns FILE PATHS.
|
| 39 |
"""
|
| 40 |
if audio_path is None:
|
| 41 |
return None, None, None, None, "Please upload an audio file."
|
| 42 |
|
| 43 |
try:
|
| 44 |
+
print(f"HT-Demucs: Loading audio from: {audio_path}")
|
| 45 |
wav, sr = torchaudio.load(audio_path)
|
| 46 |
|
| 47 |
if wav.shape[0] == 1:
|
|
|
|
| 50 |
|
| 51 |
wav = wav.to(device)
|
| 52 |
|
| 53 |
+
print("HT-Demucs: Applying the separation model...")
|
| 54 |
with torch.no_grad():
|
| 55 |
+
sources = apply_model(htdemucs_model, wav[None], device=device, progress=True)[0]
|
| 56 |
+
print("HT-Demucs: Separation complete.")
|
| 57 |
|
| 58 |
# Save stems temporarily
|
| 59 |
stem_names = ["drums", "bass", "other", "vocals"]
|
| 60 |
+
output_dir = "htdemucs_stems"
|
| 61 |
os.makedirs(output_dir, exist_ok=True)
|
| 62 |
|
| 63 |
output_paths = []
|
|
|
|
| 65 |
out_path = os.path.join(output_dir, f"{name}.wav")
|
| 66 |
torchaudio.save(out_path, sources[i].cpu(), sr)
|
| 67 |
output_paths.append(out_path)
|
| 68 |
+
print(f"β
HT-Demucs saved {name} to {out_path}")
|
| 69 |
|
| 70 |
+
return output_paths[0], output_paths[1], output_paths[2], output_paths[3], "β
HT-Demucs separation successful!"
|
| 71 |
|
| 72 |
except Exception as e:
|
| 73 |
+
print(f"HT-Demucs Error: {e}")
|
| 74 |
+
return None, None, None, None, f"β HT-Demucs Error: {str(e)}"
|
| 75 |
+
|
| 76 |
+
# --- Spleeter separation function ---
|
| 77 |
+
def separate_with_spleeter(audio_path):
|
| 78 |
+
"""
|
| 79 |
+
Separates an audio file using Spleeter into vocals, drums, bass, other, and piano.
|
| 80 |
+
Returns FILE PATHS.
|
| 81 |
+
"""
|
| 82 |
+
if audio_path is None:
|
| 83 |
+
return None, None, None, None, None, "Please upload an audio file."
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
print(f"Spleeter: Loading audio from: {audio_path}")
|
| 87 |
+
|
| 88 |
+
# Load audio with Spleeter
|
| 89 |
+
waveform, _ = spleeter_audio_adapter.load(audio_path)
|
| 90 |
+
|
| 91 |
+
print("Spleeter: Applying the separation model...")
|
| 92 |
+
prediction = spleeter_separator.separate(waveform)
|
| 93 |
+
print("Spleeter: Separation complete.")
|
| 94 |
+
|
| 95 |
+
# Save stems temporarily
|
| 96 |
+
stem_names = ["vocals", "drums", "bass", "other", "piano"]
|
| 97 |
+
output_dir = "spleeter_stems"
|
| 98 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 99 |
+
|
| 100 |
+
output_paths = []
|
| 101 |
+
for name in stem_names:
|
| 102 |
+
out_path = os.path.join(output_dir, f"{name}.wav")
|
| 103 |
+
# Convert to the right format and save
|
| 104 |
+
stem_audio = prediction[name]
|
| 105 |
+
spleeter_audio_adapter.save(out_path, stem_audio, 44100, 'wav', '16')
|
| 106 |
+
output_paths.append(out_path)
|
| 107 |
+
print(f"β
Spleeter saved {name} to {out_path}")
|
| 108 |
+
|
| 109 |
+
return output_paths[0], output_paths[1], output_paths[2], output_paths[3], output_paths[4], "β
Spleeter separation successful!"
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(f"Spleeter Error: {e}")
|
| 113 |
+
return None, None, None, None, None, f"β Spleeter Error: {str(e)}"
|
| 114 |
+
|
| 115 |
+
# --- Combined separation function ---
|
| 116 |
+
def separate_selected_models(audio_path, run_htdemucs, run_spleeter):
|
| 117 |
+
"""
|
| 118 |
+
Separates an audio file using selected models (HT-Demucs, Spleeter, or both).
|
| 119 |
+
Returns stems from selected models.
|
| 120 |
+
"""
|
| 121 |
+
if audio_path is None:
|
| 122 |
+
return [None] * 13, "Please upload an audio file."
|
| 123 |
+
|
| 124 |
+
if not run_htdemucs and not run_spleeter:
|
| 125 |
+
return [None] * 13, "β Please select at least one model to run."
|
| 126 |
+
|
| 127 |
+
try:
|
| 128 |
+
htdemucs_results = [None] * 5 # 4 stems + 1 status
|
| 129 |
+
spleeter_results = [None] * 6 # 5 stems + 1 status
|
| 130 |
+
status_messages = []
|
| 131 |
+
|
| 132 |
+
# Run HT-Demucs if selected
|
| 133 |
+
if run_htdemucs:
|
| 134 |
+
print("Running HT-Demucs...")
|
| 135 |
+
htdemucs_results = separate_with_htdemucs(audio_path)
|
| 136 |
+
status_messages.append(htdemucs_results[-1])
|
| 137 |
+
|
| 138 |
+
# Run Spleeter if selected
|
| 139 |
+
if run_spleeter:
|
| 140 |
+
print("Running Spleeter...")
|
| 141 |
+
spleeter_results = separate_with_spleeter(audio_path)
|
| 142 |
+
status_messages.append(spleeter_results[-1])
|
| 143 |
+
|
| 144 |
+
# Combine results: HT-Demucs (4 stems) + Spleeter (5 stems) + status messages
|
| 145 |
+
all_results = list(htdemucs_results[:-1]) + list(spleeter_results[:-1]) + status_messages
|
| 146 |
+
|
| 147 |
+
# Create combined status message
|
| 148 |
+
models_used = []
|
| 149 |
+
if run_htdemucs:
|
| 150 |
+
models_used.append("HT-Demucs")
|
| 151 |
+
if run_spleeter:
|
| 152 |
+
models_used.append("Spleeter")
|
| 153 |
+
|
| 154 |
+
combined_status = f"π΅ {' + '.join(models_used)} completed!\n\n" + "\n".join(status_messages)
|
| 155 |
+
|
| 156 |
+
return all_results + [combined_status]
|
| 157 |
+
|
| 158 |
+
except Exception as e:
|
| 159 |
+
print(f"Combined Error: {e}")
|
| 160 |
+
return [None] * 13, f"β Error: {str(e)}"
|
| 161 |
|
| 162 |
# --- Gradio UI ---
|
| 163 |
print("Creating Gradio interface...")
|
| 164 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Music Stem Separator - HT-Demucs & Spleeter") as demo:
|
| 165 |
+
gr.Markdown("""
|
| 166 |
+
# π΅ Music Stem Separator - HT-Demucs & Spleeter Comparison
|
| 167 |
+
|
| 168 |
+
Upload your music and get stems from both **HT-Demucs** and **Spleeter** models!
|
| 169 |
+
|
| 170 |
+
**HT-Demucs** provides: Drums, Bass, Other, Vocals
|
| 171 |
+
**Spleeter** provides: Vocals, Drums, Bass, Other, **Piano** πΉ
|
| 172 |
+
|
| 173 |
+
Compare the quality and choose the best stems for your needs!
|
| 174 |
+
""")
|
| 175 |
|
| 176 |
with gr.Row():
|
| 177 |
+
with gr.Column(scale=1):
|
| 178 |
+
audio_input = gr.Audio(type="filepath", label="π΅ Upload Your Song")
|
| 179 |
+
|
| 180 |
+
# Model selection toggles
|
| 181 |
+
gr.Markdown("### ποΈ Select Models to Run")
|
| 182 |
+
with gr.Row():
|
| 183 |
+
htdemucs_toggle = gr.Checkbox(label="π― HT-Demucs", value=True, info="Drums, Bass, Other, Vocals")
|
| 184 |
+
spleeter_toggle = gr.Checkbox(label="π΅ Spleeter", value=True, info="Vocals, Drums, Bass, Other, Piano")
|
| 185 |
+
|
| 186 |
+
separate_button = gr.Button("π Separate Music", variant="primary", size="lg")
|
| 187 |
+
status_output = gr.Textbox(label="π Status", interactive=False, lines=4)
|
| 188 |
+
|
| 189 |
+
gr.Markdown("---")
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
# HT-Demucs Results
|
| 193 |
with gr.Column():
|
| 194 |
+
gr.Markdown("### π― HT-Demucs Results")
|
| 195 |
+
with gr.Row():
|
| 196 |
+
htdemucs_drums = gr.Audio(label="π₯ Drums", type="filepath")
|
| 197 |
+
htdemucs_bass = gr.Audio(label="πΈ Bass", type="filepath")
|
| 198 |
+
with gr.Row():
|
| 199 |
+
htdemucs_other = gr.Audio(label="πΌ Other", type="filepath")
|
| 200 |
+
htdemucs_vocals = gr.Audio(label="π€ Vocals", type="filepath")
|
| 201 |
+
|
| 202 |
+
# Spleeter Results
|
| 203 |
with gr.Column():
|
| 204 |
+
gr.Markdown("### π΅ Spleeter Results")
|
| 205 |
+
with gr.Row():
|
| 206 |
+
spleeter_vocals = gr.Audio(label="π€ Vocals", type="filepath")
|
| 207 |
+
spleeter_drums = gr.Audio(label="π₯ Drums", type="filepath")
|
| 208 |
+
with gr.Row():
|
| 209 |
+
spleeter_bass = gr.Audio(label="πΈ Bass", type="filepath")
|
| 210 |
+
spleeter_other = gr.Audio(label="πΌ Other", type="filepath")
|
| 211 |
+
with gr.Row():
|
| 212 |
+
spleeter_piano = gr.Audio(label="πΉ Piano", type="filepath")
|
| 213 |
+
|
| 214 |
+
gr.Markdown("---")
|
| 215 |
+
|
| 216 |
+
with gr.Row():
|
| 217 |
+
gr.Markdown("""
|
| 218 |
+
### π Model Comparison
|
| 219 |
+
|
| 220 |
+
| Feature | HT-Demucs | Spleeter |
|
| 221 |
+
|---------|-----------|----------|
|
| 222 |
+
| **Vocals** | β
High Quality | β
High Quality |
|
| 223 |
+
| **Drums** | β
High Quality | β
High Quality |
|
| 224 |
+
| **Bass** | β
High Quality | β
High Quality |
|
| 225 |
+
| **Other** | β
High Quality | β
High Quality |
|
| 226 |
+
| **Piano** | β Not Available | β
**Available** |
|
| 227 |
+
| **Speed** | β‘ Fast | β‘ Fast |
|
| 228 |
+
| **Quality** | π Excellent | π Excellent |
|
| 229 |
+
|
| 230 |
+
**π‘ Tip:** Use Spleeter when you need piano separation, HT-Demucs for other instruments!
|
| 231 |
+
""")
|
| 232 |
+
|
| 233 |
+
# Connect the button to the combined function
|
| 234 |
separate_button.click(
|
| 235 |
+
fn=separate_selected_models,
|
| 236 |
+
inputs=[audio_input, htdemucs_toggle, spleeter_toggle],
|
| 237 |
+
outputs=[
|
| 238 |
+
htdemucs_drums, htdemucs_bass, htdemucs_other, htdemucs_vocals, # HT-Demucs outputs
|
| 239 |
+
spleeter_vocals, spleeter_drums, spleeter_bass, spleeter_other, spleeter_piano, # Spleeter outputs
|
| 240 |
+
status_output # Status output
|
| 241 |
+
]
|
| 242 |
)
|
| 243 |
|
| 244 |
+
gr.Markdown("""
|
| 245 |
+
---
|
| 246 |
+
<p style='text-align: center; font-size: small;'>
|
| 247 |
+
π Powered by <strong>HT-Demucs</strong> & <strong>Spleeter</strong> |
|
| 248 |
+
π΅ Compare and choose your best stems!
|
| 249 |
+
</p>
|
| 250 |
+
""")
|
| 251 |
|
| 252 |
+
if __name__ == "__main__":
|
| 253 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
|
@@ -1 +1,3 @@
|
|
| 1 |
-
git+https://github.com/adefossez/demucs
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/adefossez/demucs
|
| 2 |
+
spleeter==2.3.2
|
| 3 |
+
tensorflow==2.13.0
|