from time import sleep from typing import Any, Dict, Tuple, List, Optional import cv2 import gradio import DeepFakeAI.globals from DeepFakeAI import wording from DeepFakeAI.capturer import get_video_frame, get_video_frame_total from DeepFakeAI.face_analyser import get_one_face from DeepFakeAI.face_reference import get_face_reference, set_face_reference from DeepFakeAI.predictor import predict_frame from DeepFakeAI.processors.frame.core import load_frame_processor_module from DeepFakeAI.typing import Frame from DeepFakeAI.uis import core as ui from DeepFakeAI.uis.typing import ComponentName, Update from DeepFakeAI.utilities import is_video, is_image PREVIEW_IMAGE : Optional[gradio.Image] = None PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None def render() -> None: global PREVIEW_IMAGE global PREVIEW_FRAME_SLIDER with gradio.Box(): preview_image_args: Dict[str, Any] = { 'label': wording.get('preview_image_label') } preview_frame_slider_args: Dict[str, Any] = { 'label': wording.get('preview_frame_slider_label'), 'step': 1, 'visible': False } if is_image(DeepFakeAI.globals.target_path): target_frame = cv2.imread(DeepFakeAI.globals.target_path) preview_frame = extract_preview_frame(target_frame) preview_image_args['value'] = ui.normalize_frame(preview_frame) if is_video(DeepFakeAI.globals.target_path): temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) preview_frame = extract_preview_frame(temp_frame) preview_image_args['value'] = ui.normalize_frame(preview_frame) preview_image_args['visible'] = True preview_frame_slider_args['value'] = DeepFakeAI.globals.reference_frame_number preview_frame_slider_args['maximum'] = get_video_frame_total(DeepFakeAI.globals.target_path) preview_frame_slider_args['visible'] = True PREVIEW_IMAGE = gradio.Image(**preview_image_args) PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args) ui.register_component('preview_frame_slider', PREVIEW_FRAME_SLIDER) def listen() -> None: PREVIEW_FRAME_SLIDER.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) update_component_names : List[ComponentName] =\ [ 'source_file', 'target_file', 'face_recognition_dropdown', 'reference_face_distance_slider', 'frame_processors_checkbox_group' ] for component_name in update_component_names: component = ui.get_component(component_name) if component: component.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) select_component_names : List[ComponentName] =\ [ 'reference_face_position_gallery', 'face_analyser_direction_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown' ] for component_name in select_component_names: component = ui.get_component(component_name) if component: component.select(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) def update(frame_number : int = 0) -> Tuple[Update, Update]: sleep(0.1) if is_image(DeepFakeAI.globals.target_path): target_frame = cv2.imread(DeepFakeAI.globals.target_path) preview_frame = extract_preview_frame(target_frame) return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(value = None, maximum = None, visible = False) if is_video(DeepFakeAI.globals.target_path): DeepFakeAI.globals.reference_frame_number = frame_number video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path) temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) preview_frame = extract_preview_frame(temp_frame) return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(maximum = video_frame_total, visible = True) return gradio.update(value = None), gradio.update(value = None, maximum = None, visible = False) def extract_preview_frame(temp_frame : Frame) -> Frame: if predict_frame(temp_frame): return cv2.GaussianBlur(temp_frame, (99, 99), 0) source_face = get_one_face(cv2.imread(DeepFakeAI.globals.source_path)) if DeepFakeAI.globals.source_path else None temp_frame = reduce_preview_frame(temp_frame) if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference(): reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position) set_face_reference(reference_face) reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None for frame_processor in DeepFakeAI.globals.frame_processors: frame_processor_module = load_frame_processor_module(frame_processor) if frame_processor_module.pre_process(): temp_frame = frame_processor_module.process_frame( source_face, reference_face, temp_frame ) return temp_frame def reduce_preview_frame(temp_frame : Frame, max_height : int = 480) -> Frame: height, width = temp_frame.shape[:2] if height > max_height: scale = max_height / height max_width = int(width * scale) temp_frame = cv2.resize(temp_frame, (max_width, max_height)) return temp_frame