from typing import List, Optional, Tuple, Any, Dict from time import sleep import cv2 import gradio import DeepFakeAI.choices import DeepFakeAI.globals from DeepFakeAI import wording from DeepFakeAI.capturer import get_video_frame from DeepFakeAI.face_analyser import get_many_faces from DeepFakeAI.face_reference import clear_face_reference from DeepFakeAI.typing import Frame, FaceRecognition from DeepFakeAI.uis import core as ui from DeepFakeAI.uis.typing import ComponentName, Update from DeepFakeAI.utilities import is_image, is_video FACE_RECOGNITION_DROPDOWN : Optional[gradio.Dropdown] = None REFERENCE_FACE_POSITION_GALLERY : Optional[gradio.Gallery] = None REFERENCE_FACE_DISTANCE_SLIDER : Optional[gradio.Slider] = None def render() -> None: global FACE_RECOGNITION_DROPDOWN global REFERENCE_FACE_POSITION_GALLERY global REFERENCE_FACE_DISTANCE_SLIDER with gradio.Box(): reference_face_gallery_args: Dict[str, Any] = { 'label': wording.get('reference_face_gallery_label'), 'height': 120, 'object_fit': 'cover', 'columns': 10, 'allow_preview': False, 'visible': 'reference' in DeepFakeAI.globals.face_recognition } if is_image(DeepFakeAI.globals.target_path): reference_frame = cv2.imread(DeepFakeAI.globals.target_path) reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame) if is_video(DeepFakeAI.globals.target_path): reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame) FACE_RECOGNITION_DROPDOWN = gradio.Dropdown( label = wording.get('face_recognition_dropdown_label'), choices = DeepFakeAI.choices.face_recognition, value = DeepFakeAI.globals.face_recognition ) REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args) REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider( label = wording.get('reference_face_distance_slider_label'), value = DeepFakeAI.globals.reference_face_distance, maximum = 3, step = 0.05, visible = 'reference' in DeepFakeAI.globals.face_recognition ) ui.register_component('face_recognition_dropdown', FACE_RECOGNITION_DROPDOWN) ui.register_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY) ui.register_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER) def listen() -> None: FACE_RECOGNITION_DROPDOWN.select(update_face_recognition, inputs = FACE_RECOGNITION_DROPDOWN, outputs = [ REFERENCE_FACE_POSITION_GALLERY, REFERENCE_FACE_DISTANCE_SLIDER ]) REFERENCE_FACE_POSITION_GALLERY.select(clear_and_update_face_reference_position) REFERENCE_FACE_DISTANCE_SLIDER.change(update_reference_face_distance, inputs = REFERENCE_FACE_DISTANCE_SLIDER) update_component_names : List[ComponentName] =\ [ 'target_file', 'preview_frame_slider' ] for component_name in update_component_names: component = ui.get_component(component_name) if component: component.change(update_face_reference_position, outputs = REFERENCE_FACE_POSITION_GALLERY) select_component_names : List[ComponentName] =\ [ 'face_analyser_direction_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown' ] for component_name in select_component_names: component = ui.get_component(component_name) if component: component.select(update_face_reference_position, outputs = REFERENCE_FACE_POSITION_GALLERY) def update_face_recognition(face_recognition : FaceRecognition) -> Tuple[Update, Update]: if face_recognition == 'reference': DeepFakeAI.globals.face_recognition = face_recognition return gradio.update(visible = True), gradio.update(visible = True) if face_recognition == 'many': DeepFakeAI.globals.face_recognition = face_recognition return gradio.update(visible = False), gradio.update(visible = False) def clear_and_update_face_reference_position(event: gradio.SelectData) -> Update: clear_face_reference() return update_face_reference_position(event.index) def update_face_reference_position(reference_face_position : int = 0) -> Update: sleep(0.2) gallery_frames = [] DeepFakeAI.globals.reference_face_position = reference_face_position if is_image(DeepFakeAI.globals.target_path): reference_frame = cv2.imread(DeepFakeAI.globals.target_path) gallery_frames = extract_gallery_frames(reference_frame) if is_video(DeepFakeAI.globals.target_path): reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) gallery_frames = extract_gallery_frames(reference_frame) if gallery_frames: return gradio.update(value = gallery_frames) return gradio.update(value = None) def update_reference_face_distance(reference_face_distance : float) -> Update: DeepFakeAI.globals.reference_face_distance = reference_face_distance return gradio.update(value = reference_face_distance) def extract_gallery_frames(reference_frame : Frame) -> List[Frame]: crop_frames = [] faces = get_many_faces(reference_frame) for face in faces: start_x, start_y, end_x, end_y = map(int, face['bbox']) padding_x = int((end_x - start_x) * 0.25) padding_y = int((end_y - start_y) * 0.25) start_x = max(0, start_x - padding_x) start_y = max(0, start_y - padding_y) end_x = max(0, end_x + padding_x) end_y = max(0, end_y + padding_y) crop_frame = reference_frame[start_y:end_y, start_x:end_x] crop_frames.append(ui.normalize_frame(crop_frame)) return crop_frames