# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Masked Version of BERT. It replaces the `torch.nn.Linear` layers with :class:`~emmental.MaskedLinear` and add an additional parameters in the forward pass to compute the adaptive mask. Built on top of `transformers.models.bert.modeling_bert`""" import logging import math import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from emmental import MaskedBertConfig from emmental.modules import MaskedLinear from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.modeling_utils import PreTrainedModel, prune_linear_layer from transformers.models.bert.modeling_bert import ACT2FN, load_tf_weights_in_bert logger = logging.getLogger(__name__) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = MaskedLinear( config.hidden_size, self.all_head_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.key = MaskedLinear( config.hidden_size, self.all_head_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.value = MaskedLinear( config.hidden_size, self.all_head_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): mixed_query_layer = self.query(hidden_states, threshold=threshold) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states, threshold=threshold) mixed_value_layer = self.value(encoder_hidden_states, threshold=threshold) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states, threshold=threshold) mixed_value_layer = self.value(hidden_states, threshold=threshold) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = MaskedLinear( config.hidden_size, config.hidden_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, threshold): hidden_states = self.dense(hidden_states, threshold=threshold) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, threshold=threshold, ) attention_output = self.output(self_outputs[0], hidden_states, threshold=threshold) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = MaskedLinear( config.hidden_size, config.intermediate_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states, threshold): hidden_states = self.dense(hidden_states, threshold=threshold) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = MaskedLinear( config.intermediate_size, config.hidden_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, threshold): hidden_states = self.dense(hidden_states, threshold=threshold) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = BertAttention(config) self.is_decoder = config.is_decoder if self.is_decoder: self.crossattention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask, threshold=threshold) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.is_decoder and encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights intermediate_output = self.intermediate(attention_output, threshold=threshold) layer_output = self.output(intermediate_output, attention_output, threshold=threshold) outputs = (layer_output,) + outputs return outputs class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, threshold=threshold, ) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class MaskedBertPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MaskedBertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() MASKED_BERT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module `_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~emmental.MaskedBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ MASKED_BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.BertTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. """ @add_start_docstrings( "The bare Masked Bert Model transformer outputting raw hidden-states without any specific head on top.", MASKED_BERT_START_DOCSTRING, ) class MaskedBertModel(MaskedBertPreTrainedModel): """ The `MaskedBertModel` class replicates the :class:`~transformers.BertModel` class and adds specific inputs to compute the adaptive mask on the fly. Note that we freeze the embeddings modules from their pre-trained values. """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.embeddings.requires_grad_(requires_grad=False) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): r""" threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] causal_mask = causal_mask.to( attention_mask.dtype ) # causal and attention masks must have same type with pytorch version < 1.3 extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] elif encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for encoder_hidden_shape (shape {}) or encoder_attention_mask (shape {})".format( encoder_hidden_shape, encoder_attention_mask.shape ) ) encoder_extended_attention_mask = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, threshold=threshold, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForSequenceClassification(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MaskedBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, threshold=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForMultipleChoice(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MaskedBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, threshold=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): Classification loss. classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): `num_choices` is the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ num_choices = input_ids.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs # (loss), reshaped_logits, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForTokenClassification(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MaskedBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, threshold=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : Classification loss. scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`) Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForQuestionAnswering(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MaskedBertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, threshold=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = ( start_logits, end_logits, ) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)