# Image Captioning (vision-encoder-text-decoder model) training example The following example showcases how to finetune a vision-encoder-text-decoder model for image captioning using the JAX/Flax backend, leveraging 🤗 Transformers library's [FlaxVisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder#transformers.FlaxVisionEncoderDecoderModel). JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. `run_image_captioning_flax.py` is a lightweight example of how to download and preprocess a dataset from the 🤗 Datasets library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets.html#json-files and you also will find examples of these below. ### Download COCO dataset (2017) This example uses COCO dataset (2017) through a custom dataset script, which requires users to manually download the COCO dataset before training. ```bash mkdir data cd data wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/zips/test2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip wget http://images.cocodataset.org/annotations/image_info_test2017.zip cd .. ``` ### Create a model from a vision encoder model and a text decoder model Next, we create a [FlaxVisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder#transformers.FlaxVisionEncoderDecoderModel) instance from a pre-trained vision encoder ([ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.FlaxViTModel)) and a pre-trained text decoder ([GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.FlaxGPT2Model)): ```bash python3 create_model_from_encoder_decoder_models.py \ --output_dir model \ --encoder_model_name_or_path google/vit-base-patch16-224-in21k \ --decoder_model_name_or_path gpt2 ``` ### Train the model Finally, we can run the example script to train the model: ```bash python3 run_image_captioning_flax.py \ --output_dir ./image-captioning-training-results \ --model_name_or_path model \ --dataset_name ydshieh/coco_dataset_script \ --dataset_config_name=2017 \ --data_dir $PWD/data \ --image_column image_path \ --caption_column caption \ --do_train --do_eval --predict_with_generate \ --num_train_epochs 1 \ --eval_steps 500 \ --learning_rate 3e-5 --warmup_steps 0 \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --overwrite_output_dir \ --max_target_length 32 \ --num_beams 8 \ --preprocessing_num_workers 16 \ --logging_steps 10 \ --block_size 16384 \ --push_to_hub ``` This should finish in about 1h30 on Cloud TPU, with validation loss and ROUGE2 score of 2.0153 and 14.64 respectively after 1 epoch. Training statistics can be accessed on [Models](https://huggingface.co/ydshieh/image-captioning-training-results/tensorboard).