# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import gc import inspect import os import os.path import pickle import random import re import tempfile import warnings from collections import defaultdict from typing import Dict, List, Tuple import numpy as np from pytest import mark import transformers from transformers import ( AutoModel, AutoModelForSequenceClassification, PretrainedConfig, is_torch_available, logging, ) from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES, MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES, MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) from transformers.testing_utils import ( CaptureLogger, is_pt_flax_cross_test, is_pt_tf_cross_test, require_accelerate, require_safetensors, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, torch_device, ) from transformers.utils import ( CONFIG_NAME, GENERATION_CONFIG_NAME, WEIGHTS_NAME, is_accelerate_available, is_flax_available, is_tf_available, is_torch_fx_available, ) from transformers.utils.generic import ModelOutput if is_accelerate_available(): from accelerate.utils import compute_module_sizes if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, AdaptiveEmbedding from transformers.pytorch_utils import id_tensor_storage if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_fx_available(): from transformers.utils.fx import symbolic_trace def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) setattr(configs_no_init, key, no_init_subconfig) return configs_no_init def _mock_init_weights(self, module): for name, param in module.named_parameters(recurse=False): # Use the first letter of the name to get a value and go from a <> -13 to z <> 12 value = ord(name[0].lower()) - 110 param.data.fill_(value) def _mock_all_init_weights(self): # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) import transformers.modeling_utils if transformers.modeling_utils._init_weights: for module in self.modules(): module._is_hf_initialized = False # Initialize weights self.apply(self._initialize_weights) # Tie weights should be skipped when not initializing all weights # since from_pretrained(...) calls tie weights anyways self.tie_weights() @require_torch class ModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () fx_compatible = False test_torchscript = True test_pruning = True test_resize_embeddings = True test_resize_position_embeddings = False test_head_masking = True test_mismatched_shapes = True test_missing_keys = True test_model_parallel = False is_encoder_decoder = False has_attentions = True model_split_percents = [0.5, 0.7, 0.9] def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if isinstance(v, torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES): inputs_dict.pop("attention_mask") if return_labels: if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) elif model_class.__name__ in [ *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), ]: inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES), *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES), *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES), *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES): num_patches = self.model_tester.image_size // self.model_tester.patch_size inputs_dict["bool_masked_pos"] = torch.zeros( (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device ) elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES): batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, height, width], device=torch_device ).long() return inputs_dict def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_save_load(out1, out2): # make sure we don't have nans out_2 = out2.cpu().numpy() out_2[np.isnan(out_2)] = 0 out_1 = out1.cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**self._prepare_for_class(inputs_dict, model_class))[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) # the config file (and the generation config file, if it can generate) should be saved self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) self.assertEqual( model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) ) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_save_load(tensor1, tensor2) else: check_save_load(first, second) def test_from_pretrained_no_checkpoint(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) state_dict = model.state_dict() new_model = model_class.from_pretrained( pretrained_model_name_or_path=None, config=config, state_dict=state_dict ) for p1, p2 in zip(model.parameters(), new_model.parameters()): self.assertTrue(torch.equal(p1, p2)) def test_save_load_keys_to_ignore_on_save(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None) if _keys_to_ignore_on_save is None: continue # check the keys are in the original state_dict for k in _keys_to_ignore_on_save: self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys())) # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME) state_dict_saved = torch.load(output_model_file) for k in _keys_to_ignore_on_save: self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys())) # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer. load_result = model.load_state_dict(state_dict_saved, strict=False) self.assertTrue( len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save) ) self.assertTrue(len(load_result.unexpected_keys) == 0) def test_gradient_checkpointing_backward_compatibility(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue config.gradient_checkpointing = True model = model_class(config) self.assertTrue(model.is_gradient_checkpointing) def test_gradient_checkpointing_enable_disable(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue # at init model should have gradient checkpointing disabled model = model_class(config) self.assertFalse(model.is_gradient_checkpointing) # check enable works model.gradient_checkpointing_enable() self.assertTrue(model.is_gradient_checkpointing) # check disable works model.gradient_checkpointing_disable() self.assertFalse(model.is_gradient_checkpointing) def test_save_load_fast_init_from_base(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if config.__class__ not in MODEL_MAPPING: return base_class = MODEL_MAPPING[config.__class__] if isinstance(base_class, tuple): base_class = base_class[0] for model_class in self.all_model_classes: if model_class == base_class: continue # make a copy of model class to not break future tests # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class class CopyClass(model_class): pass model_class_copy = CopyClass # make sure that all keys are expected for test model_class_copy._keys_to_ignore_on_load_missing = [] # make init deterministic, but make sure that # non-initialized weights throw errors nevertheless model_class_copy._init_weights = _mock_init_weights model_class_copy.init_weights = _mock_all_init_weights model = base_class(config) state_dict = model.state_dict() # this will often delete a single weight of a multi-weight module # to test an edge case random_key_to_del = random.choice(list(state_dict.keys())) del state_dict[random_key_to_del] # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) model_fast_init = model_class_copy.from_pretrained(tmpdirname) model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False) # Before we test anything for key in model_fast_init.state_dict().keys(): if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item() else: max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_save_load_fast_init_to_base(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if config.__class__ not in MODEL_MAPPING: return base_class = MODEL_MAPPING[config.__class__] if isinstance(base_class, tuple): base_class = base_class[0] for model_class in self.all_model_classes: if model_class == base_class: continue # make a copy of model class to not break future tests # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class class CopyClass(base_class): pass base_class_copy = CopyClass # make sure that all keys are expected for test base_class_copy._keys_to_ignore_on_load_missing = [] # make init deterministic, but make sure that # non-initialized weights throw errors nevertheless base_class_copy._init_weights = _mock_init_weights base_class_copy.init_weights = _mock_all_init_weights model = model_class(config) state_dict = model.state_dict() # this will often delete a single weight of a multi-weight module # to test an edge case random_key_to_del = random.choice(list(state_dict.keys())) del state_dict[random_key_to_del] # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.config.save_pretrained(tmpdirname) torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) model_fast_init = base_class_copy.from_pretrained(tmpdirname) model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False) for key in model_fast_init.state_dict().keys(): if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): max_diff = torch.max( model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key] ).item() else: max_diff = torch.max( torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]) ).item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_determinism(first, second): out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**self._prepare_for_class(inputs_dict, model_class))[0] second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_determinism(tensor1, tensor2) else: check_determinism(first, second) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class.__name__ in [ *get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), ]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True if ( model_class.__name__ in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_attention_outputs(self): if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Question Answering model returns start_logits and end_logits if model_class.__name__ in [ *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), ]: correct_outlen += 1 # start_logits and end_logits instead of only 1 output if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @slow def test_torchscript_simple(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torchscript(config, inputs_dict) @slow def test_torchscript_output_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True self._create_and_check_torchscript(config, inputs_dict) @slow def test_torchscript_output_hidden_state(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True self._create_and_check_torchscript(config, inputs_dict) # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry` def clear_torch_jit_class_registry(self): torch._C._jit_clear_class_registry() torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() # torch 1.8 has no `_clear_class_state` in `torch.jit._state` if hasattr(torch.jit._state, "_clear_class_state"): torch.jit._state._clear_class_state() def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) main_input_name = model_class.main_input_name try: if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward main_input = inputs[main_input_name] attention_mask = inputs["attention_mask"] decoder_input_ids = inputs["decoder_input_ids"] decoder_attention_mask = inputs["decoder_attention_mask"] model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask) traced_model = torch.jit.trace( model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask) ) elif "bbox" in inputs and "image" in inputs: # LayoutLMv2 requires additional inputs input_ids = inputs["input_ids"] bbox = inputs["bbox"] image = inputs["image"].tensor model(input_ids, bbox, image) traced_model = torch.jit.trace( model, (input_ids, bbox, image), check_trace=False ) # when traced model is checked, an error is produced due to name mangling else: main_input = inputs[main_input_name] model(main_input) traced_model = torch.jit.trace(model, main_input) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_torch_fx(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torch_fx_tracing(config, inputs_dict) def test_torch_fx_output_loss(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True) def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): if not is_torch_fx_available() or not self.fx_compatible: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) try: if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward labels = inputs.get("labels", None) input_names = [ "attention_mask", "decoder_attention_mask", "decoder_input_ids", "input_features", "input_ids", "input_values", ] if labels is not None: input_names.append("labels") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) model_output = model(**filtered_inputs) traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) else: input_names = [ "attention_mask", "bbox", "input_features", "input_ids", "input_values", "pixel_values", "token_type_ids", "visual_feats", "visual_pos", ] labels = inputs.get("labels", None) start_positions = inputs.get("start_positions", None) end_positions = inputs.get("end_positions", None) if labels is not None: input_names.append("labels") if start_positions is not None: input_names.append("start_positions") if end_positions is not None: input_names.append("end_positions") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( not hasattr(model.config, "problem_type") or model.config.problem_type is None ): model.config.problem_type = "single_label_classification" traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) model_output = model(**filtered_inputs) except Exception as e: self.fail(f"Couldn't trace module: {e}") def flatten_output(output): flatten = [] for x in output: if isinstance(x, (tuple, list)): flatten += flatten_output(x) elif not isinstance(x, torch.Tensor): continue else: flatten.append(x) return flatten model_output = flatten_output(model_output) traced_output = flatten_output(traced_output) num_outputs = len(model_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], traced_output[i]), f"traced {i}th output doesn't match model {i}th output for {model_class}", ) # Test that the model can be serialized and restored properly with tempfile.TemporaryDirectory() as tmp_dir_name: pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") try: with open(pkl_file_name, "wb") as f: pickle.dump(traced_model, f) with open(pkl_file_name, "rb") as f: loaded = pickle.load(f) except Exception as e: self.fail(f"Couldn't serialize / deserialize the traced model: {e}") loaded_output = loaded(**filtered_inputs) loaded_output = flatten_output(loaded_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], loaded_output[i]), f"serialized model {i}th output doesn't match model {i}th output for {model_class}", ) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_headmasking(self): if not self.test_head_masking: return global_rng.seed(42) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() global_rng.seed() inputs_dict["output_attentions"] = True config.output_hidden_states = True configs_no_init = _config_zero_init(config) # To be sure we have no Nan for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() # Prepare head_mask # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior) head_mask = torch.ones( self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device, ) head_mask[0, 0] = 0 head_mask[-1, :-1] = 0 head_mask.requires_grad_(requires_grad=True) inputs = self._prepare_for_class(inputs_dict, model_class).copy() inputs["head_mask"] = head_mask if model.config.is_encoder_decoder: signature = inspect.signature(model.forward) arg_names = [*signature.parameters.keys()] if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model inputs["decoder_head_mask"] = head_mask if "cross_attn_head_mask" in arg_names: inputs["cross_attn_head_mask"] = head_mask outputs = model(**inputs, return_dict=True) # Test that we can get a gradient back for importance score computation output = sum(t.sum() for t in outputs[0]) output = output.sum() output.backward() multihead_outputs = head_mask.grad self.assertIsNotNone(multihead_outputs) self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) def check_attentions_validity(attentions): # Remove Nan for t in attentions: self.assertLess( torch.sum(torch.isnan(t)), t.numel() / 4 ) # Check we don't have more than 25% nans (arbitrary) attentions = [ t.masked_fill(torch.isnan(t), 0.0) for t in attentions ] # remove them (the test is less complete) self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0) if len(attentions) > 2: # encoder-decoder models have only 2 layers in each module self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) if model.config.is_encoder_decoder: check_attentions_validity(outputs.encoder_attentions) check_attentions_validity(outputs.decoder_attentions) check_attentions_validity(outputs.cross_attentions) else: check_attentions_validity(outputs.attentions) def test_head_pruning(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) # TODO: To have this check, we will need at least 3 layers. Do we really need it? # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_pretrained(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } model.prune_heads(heads_to_prune) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) # TODO: To have this check, we will need at least 3 layers. Do we really need it? # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_config_init(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) # TODO: To have this check, we will need at least 3 layers. Do we really need it? # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_integration(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False heads_to_prune = {1: [1, 2]} config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) heads_to_prune = {0: [0], 1: [1, 2]} model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]}) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: seq_length = seq_length * self.model_tester.chunk_length else: seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] if config.is_encoder_decoder: # Seq2Seq models encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.decoder_hidden_states[0] decoder_hidden_states.retain_grad() if self.has_attentions: encoder_attentions = outputs.encoder_attentions[0] encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) if self.has_attentions: self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) else: # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: attentions = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def test_feed_forward_chunking(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: torch.manual_seed(0) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model.eval() hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] torch.manual_seed(0) config.chunk_size_feed_forward = 1 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) def test_resize_position_vector_embeddings(self): if not self.test_resize_position_embeddings: return ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() max_position_embeddings = config.max_position_embeddings # Retrieve the embeddings and clone theme if model.config.is_encoder_decoder: encoder_model_embed, decoder_model_embed = model.get_position_embeddings() encoder_cloned_embeddings = encoder_model_embed.weight.clone() decoder_cloned_embeddings = decoder_model_embed.weight.clone() else: model_embed = model.get_position_embeddings() cloned_embeddings = model_embed.weight.clone() # Check that resizing the position embeddings with a larger max_position_embeddings increases # the model's postion embeddings size model.resize_position_embeddings(max_position_embeddings + 10) self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10) # Check that it actually resizes the embeddings matrix if model.config.is_encoder_decoder: encoder_model_embed, decoder_model_embed = model.get_position_embeddings() self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10) self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10) else: model_embed = model.get_position_embeddings() self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the position embeddings with a smaller max_position_embeddings decreases # the model's max_position_embeddings model.resize_position_embeddings(max_position_embeddings - 5) self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5) # Check that it actually resizes the embeddings matrix if model.config.is_encoder_decoder: encoder_model_embed, decoder_model_embed = model.get_position_embeddings() self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5) self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5) else: model_embed = model.get_position_embeddings() self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True if model.config.is_encoder_decoder: for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False else: for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) # make sure that decoder_input_ids are resized as well if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) self.assertTrue(model.config.vocab_size + 10, model_vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) with self.assertRaisesRegex( ValueError, "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", ): model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding)) model.set_input_embeddings(nn.Embedding(10, 10)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(model_class.main_input_name, observed_main_input_name) def test_correct_missing_keys(self): if not self.test_missing_keys: return config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) base_model_prefix = model.base_model_prefix if hasattr(model, base_model_prefix): extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)} extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)}) # Some models define this as None if model._keys_to_ignore_on_load_missing: for key in model._keys_to_ignore_on_load_missing: extra_params.pop(key, None) if not extra_params: # In that case, we *are* on a head model, but every # single key is not actual parameters and this is # tested in `test_tied_model_weights_key_ignore` test. continue with tempfile.TemporaryDirectory() as temp_dir_name: model.base_model.save_pretrained(temp_dir_name) model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__) def test_tie_model_weights(self): if not self.test_torchscript: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_same_values(layer_1, layer_2): equal = True for p1, p2 in zip(layer_1.weight, layer_2.weight): if p1.data.ne(p2.data).sum() > 0: equal = False return equal for model_class in self.all_model_classes: config.torchscript = True model_not_tied = model_class(config) if model_not_tied.get_output_embeddings() is None: continue config_tied = copy.deepcopy(config) config_tied.torchscript = False model_tied = model_class(config_tied) params_tied = list(model_tied.parameters()) # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # embeddings.weight.data.div_(2) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # decoding.weight.data.div_(4) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # Check that after resize they remain tied. model_tied.resize_token_embeddings(config.vocab_size + 10) params_tied_2 = list(model_tied.parameters()) self.assertEqual(len(params_tied_2), len(params_tied)) # decoding.weight.data.mul_(20) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape) # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head)) @require_safetensors def test_can_use_safetensors(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model_tied = model_class(config) with tempfile.TemporaryDirectory() as d: try: model_tied.save_pretrained(d, safe_serialization=True) except Exception as e: raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}") model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) # Checking the state dicts are correct reloaded_state = model_reloaded.state_dict() for k, v in model_tied.state_dict().items(): self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") torch.testing.assert_close( v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" ) # Checking there was no complain of missing weights self.assertEqual(infos["missing_keys"], []) # Checking the tensor sharing are correct ptrs = defaultdict(list) for k, v in model_tied.state_dict().items(): ptrs[v.data_ptr()].append(k) shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1} for _, shared_names in shared_ptrs.items(): reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names} self.assertEqual( len(reloaded_ptrs), 1, f"The shared pointers are incorrect, found different pointers for keys {shared_names}", ) def test_load_save_without_tied_weights(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.tie_word_embeddings = False for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as d: model.save_pretrained(d) model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) # Checking the state dicts are correct reloaded_state = model_reloaded.state_dict() for k, v in model.state_dict().items(): self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") torch.testing.assert_close( v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" ) # Checking there was no complain of missing weights self.assertEqual(infos["missing_keys"], []) def test_tied_weights_keys(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.tie_word_embeddings = True for model_class in self.all_model_classes: model_tied = model_class(config) ptrs = collections.defaultdict(list) for name, tensor in model_tied.state_dict().items(): ptrs[id_tensor_storage(tensor)].append(name) # These are all the pointers of shared tensors. tied_params = [names for _, names in ptrs.items() if len(names) > 1] tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else [] # Detect we get a hit for each key for key in tied_weight_keys: if not any(re.search(key, p) for group in tied_params for p in group): raise ValueError(f"{key} is not a tied weight key for {model_class}.") # Removed tied weights found from tied params -> there should only be one left after for key in tied_weight_keys: for i in range(len(tied_params)): tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None] tied_params = [group for group in tied_params if len(group) > 1] self.assertListEqual( tied_params, [], f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.", ) def test_model_weights_reload_no_missing_tied_weights(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) # We are nuking ALL weights on file, so every parameter should # yell on load. We're going to detect if we yell too much, or too little. with open(os.path.join(tmp_dir, "pytorch_model.bin"), "wb") as f: torch.save({}, f) model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True) prefix = f"{model_reloaded.base_model_prefix}." params = dict(model_reloaded.named_parameters()) params.update(dict(model_reloaded.named_buffers())) param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()} missing_keys = set(infos["missing_keys"]) extra_missing = missing_keys - param_names # Remove tied weights from extra missing: they are normally not warned as missing if their tied # counterpart is present but here there are no weights at all so we do get the warning. ptrs = collections.defaultdict(list) for name, tensor in model_reloaded.state_dict().items(): ptrs[id_tensor_storage(tensor)].append(name) tied_params = [names for _, names in ptrs.items() if len(names) > 1] for group in tied_params: group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group} # We remove the group from extra_missing if not all weights from group are in it if len(group - extra_missing) > 0: extra_missing = extra_missing - set(group) self.assertEqual( extra_missing, set(), f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. " f"For debugging, tied parameters are {tied_params}", ) missed_missing = param_names - missing_keys # Remove nonpersistent buffers from missed_missing buffers = [n for n, _ in model_reloaded.named_buffers()] nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()} nonpersistent_buffers = { k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers } missed_missing = missed_missing - nonpersistent_buffers if model_reloaded._keys_to_ignore_on_load_missing is None: expected_missing = set() else: expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing) self.assertEqual( missed_missing, expected_missing, f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real" " parameters. If they are non persistent buffers make sure to instantiate them with" " `persistent=False`", ) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) # Don't copy this method to model specific test file! # TODO: remove this method once the issues are all fixed! def _make_attention_mask_non_null(self, inputs_dict): """Make sure no sequence has all zeros as attention mask""" for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: if k in inputs_dict: attention_mask = inputs_dict[k] # Make sure no all 0s attention masks - to avoid failure at this moment. # Put `1` at the beginning of sequences to make it still work when combining causal attention masks. # TODO: remove this line once a fix regarding large negative values for attention mask is done. attention_mask = torch.cat( [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1 ) # Here we make the first sequence with all 0s as attention mask. # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks. # TODO: enable this block once the large negative values thing is cleaned up. # (see https://github.com/huggingface/transformers/issues/14859) # attention_mask = torch.cat( # [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]], # dim=0 # ) inputs_dict[k] = attention_mask # Don't copy this method to model specific test file! # TODO: remove this method once the issues are all fixed! def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): """For temporarily ignoring some failed test cases (issues to be fixed)""" tf_keys = {k for k, v in tf_outputs.items() if v is not None} pt_keys = {k for k, v in pt_outputs.items() if v is not None} key_differences = tf_keys.symmetric_difference(pt_keys) if model_class.__name__ in [ "FlaubertWithLMHeadModel", "FunnelForPreTraining", "ElectraForPreTraining", "XLMWithLMHeadModel", "TransfoXLLMHeadModel", ]: for k in key_differences: if k in ["loss", "losses"]: tf_keys.discard(k) pt_keys.discard(k) elif model_class.__name__.startswith("GPT2"): # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple. tf_keys.discard("past_key_values") pt_keys.discard("past_key_values") # create new outputs from the remaining fields new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) return new_tf_outputs, new_pt_outputs # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. Args: model_class: The class of the model that is currently testing. For example, `TFBertModel`, TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative error messages. name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element being a named field in the output. """ self.assertEqual(type(name), str) if attributes is not None: self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). if isinstance(tf_outputs, ModelOutput): self.assertTrue( isinstance(pt_outputs, ModelOutput), f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", ) # Don't copy this block to model specific test file! # TODO: remove this method and this line after issues are fixed tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) tf_keys = [k for k, v in tf_outputs.items() if v is not None] pt_keys = [k for k, v in pt_outputs.items() if v is not None] self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") # convert to the case of `tuple` # appending each key to the current (string) `name` attributes = tuple([f"{name}.{k}" for k in tf_keys]) self.check_pt_tf_outputs( tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes ) # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) elif type(tf_outputs) in [tuple, list]: self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") if attributes is not None: # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) self.assertEqual( len(attributes), len(tf_outputs), f"{name}: The tuple `attributes` should have the same length as `tf_outputs`", ) else: # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name` attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) elif isinstance(tf_outputs, tf.Tensor): self.assertTrue( isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" ) tf_outputs = tf_outputs.numpy() pt_outputs = pt_outputs.detach().to("cpu").numpy() self.assertEqual( tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" ) # deal with NumPy's scalars to make replacing nan values by 0 work. if np.isscalar(tf_outputs): tf_outputs = np.array([tf_outputs]) pt_outputs = np.array([pt_outputs]) tf_nans = np.isnan(tf_outputs) pt_nans = np.isnan(pt_outputs) pt_outputs[tf_nans] = 0 tf_outputs[tf_nans] = 0 pt_outputs[pt_nans] = 0 tf_outputs[pt_nans] = 0 max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).") else: raise ValueError( "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got" f" {type(tf_outputs)} instead." ) def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict): tf_inputs_dict = {} for key, tensor in pt_inputs_dict.items(): # skip key that does not exist in tf if type(tensor) == bool: tf_inputs_dict[key] = tensor elif key == "input_values": tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) elif key == "pixel_values": tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) elif key == "input_features": tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) # other general float inputs elif tensor.is_floating_point(): tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) else: tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32) return tf_inputs_dict def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict): tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) # send pytorch inputs to the correct device pt_inputs_dict = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() } # send pytorch model to the correct device pt_model.to(torch_device) # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences pt_model.eval() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs_dict) tf_outputs = tf_model(tf_inputs_dict) # tf models returned loss is usually a tensor rather than a scalar. # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`) # Change it here to a scalar to match PyTorch models' loss tf_loss = getattr(tf_outputs, "loss", None) if tf_loss is not None: tf_outputs.loss = tf.math.reduce_mean(tf_loss) self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model)) @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning if not hasattr(transformers, tf_model_class_name): # transformers does not have this model in TF version yet return # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) tf_model_class = getattr(transformers, tf_model_class_name) pt_model = model_class(config) tf_model = tf_model_class(config) pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs_dict_with_labels = self._prepare_for_class( inputs_dict, model_class, # Not all models accept "labels" in the forward pass (yet :) ) return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False, ) # make sure only tf inputs are forward that actually exist in function args tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys()) # remove all head masks tf_input_keys.discard("head_mask") tf_input_keys.discard("cross_attn_head_mask") tf_input_keys.discard("decoder_head_mask") pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys} pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys} # For some models (e.g. base models), there is no label returned. # Set the input dict to `None` to avoid check outputs twice for the same input dicts. if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()): pt_inputs_dict_with_labels = None # Check we can load pt model in tf and vice-versa with model => model functions # Here requires `tf_inputs_dict` to build `tf_model` tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) # check with `labels` if pt_inputs_dict_with_labels: self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) # check with `labels` if pt_inputs_dict_with_labels: self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs((a - b)).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): """ Args: model_class: The class of the model that is currently testing. For example, ..., etc. Currently unused, but it could make debugging easier and faster. names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs. Currently unused, but in the future, we could use this information to make the error message clearer by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax. """ self.assertEqual(type(name), str) if attributes is not None: self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). if isinstance(fx_outputs, ModelOutput): self.assertTrue( isinstance(pt_outputs, ModelOutput), f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is", ) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch") # convert to the case of `tuple` # appending each key to the current (string) `name` attributes = tuple([f"{name}.{k}" for k in fx_keys]) self.check_pt_flax_outputs( fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes ) # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) elif type(fx_outputs) in [tuple, list]: self.assertEqual( type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch" ) self.assertEqual( len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch" ) if attributes is not None: # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) self.assertEqual( len(attributes), len(fx_outputs), f"{name}: The tuple `attributes` should have the same length as `fx_outputs`", ) else: # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name` attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))]) for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes): self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr) elif isinstance(fx_outputs, jnp.ndarray): self.assertTrue( isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is" ) # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`. fx_outputs = np.array(fx_outputs) pt_outputs = pt_outputs.detach().to("cpu").numpy() self.assertEqual( fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch" ) # deal with NumPy's scalars to make replacing nan values by 0 work. if np.isscalar(fx_outputs): fx_outputs = np.array([fx_outputs]) pt_outputs = np.array([pt_outputs]) fx_nans = np.isnan(fx_outputs) pt_nans = np.isnan(pt_outputs) pt_outputs[fx_nans] = 0 fx_outputs[fx_nans] = 0 pt_outputs[pt_nans] = 0 fx_outputs[pt_nans] = 0 max_diff = np.amax(np.abs(fx_outputs - pt_outputs)) self.assertLessEqual( max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})." ) else: raise ValueError( "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got" f" {type(fx_outputs)} instead." ) @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): fx_model_class_name = "Flax" + model_class.__name__ if not hasattr(transformers, fx_model_class_name): # no flax model exists for this class return # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions fx_model_class = getattr(transformers, fx_model_class_name) # load PyTorch class pt_model = model_class(config).eval() # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False # load Flax class fx_model = fx_model_class(config, dtype=jnp.float32) # make sure only flax inputs are forward that actually exist in function args fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() # prepare inputs pt_inputs = self._prepare_for_class(inputs_dict, model_class) # remove function args that don't exist in Flax pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} # send pytorch inputs to the correct device pt_inputs = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() } # convert inputs to Flax fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state # send pytorch model to the correct device pt_model.to(torch_device) with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) fx_outputs = fx_model(**fx_inputs) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**fx_inputs) fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class) @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): fx_model_class_name = "Flax" + model_class.__name__ if not hasattr(transformers, fx_model_class_name): # no flax model exists for this class return # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions fx_model_class = getattr(transformers, fx_model_class_name) # load PyTorch class pt_model = model_class(config).eval() # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False # load Flax class fx_model = fx_model_class(config, dtype=jnp.float32) # make sure only flax inputs are forward that actually exist in function args fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() # prepare inputs pt_inputs = self._prepare_for_class(inputs_dict, model_class) # remove function args that don't exist in Flax pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} # send pytorch inputs to the correct device pt_inputs = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() } # convert inputs to Flax fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) # make sure weights are tied in PyTorch pt_model.tie_weights() # send pytorch model to the correct device pt_model.to(torch_device) with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) fx_outputs = fx_model(**fx_inputs) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) # send pytorch model to the correct device pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = nn.DataParallel(model) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch_multi_gpu def test_model_parallelization(self): if not self.test_model_parallel: return # a candidate for testing_utils def get_current_gpu_memory_use(): """returns a list of cuda memory allocations per GPU in MBs""" per_device_memory = [] for id in range(torch.cuda.device_count()): with torch.cuda.device(id): per_device_memory.append(torch.cuda.memory_allocated() >> 20) return per_device_memory # Needs a large model to see the difference. config = self.model_tester.get_large_model_config() for model_class in self.all_parallelizable_model_classes: torch.cuda.empty_cache() # 1. single gpu memory load + unload + memory measurements # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests) memory_at_start = get_current_gpu_memory_use() # Put model on device 0 and take a memory snapshot model = model_class(config) model.to("cuda:0") memory_after_model_load = get_current_gpu_memory_use() # The memory use on device 0 should be higher than it was initially. self.assertGreater(memory_after_model_load[0], memory_at_start[0]) del model gc.collect() torch.cuda.empty_cache() # 2. MP test # it's essential to re-calibrate the usage before the next stage memory_at_start = get_current_gpu_memory_use() # Spread model layers over multiple devices model = model_class(config) model.parallelize() memory_after_parallelization = get_current_gpu_memory_use() # Assert that the memory use on all devices is higher than it was when loaded only on CPU for n in range(len(model.device_map.keys())): self.assertGreater(memory_after_parallelization[n], memory_at_start[n]) # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it self.assertLess(memory_after_parallelization[0], memory_after_model_load[0]) # Assert that the memory use of device 1 is higher than it was when the entire model was loaded # on device 0 and device 1 wasn't used at all self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1]) del model gc.collect() torch.cuda.empty_cache() @require_torch_multi_gpu def test_model_parallel_equal_results(self): if not self.test_model_parallel: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_parallelizable_model_classes: inputs_dict = self._prepare_for_class(inputs_dict, model_class) def cast_to_device(dictionary, device): output = {} for k, v in dictionary.items(): if isinstance(v, torch.Tensor): output[k] = v.to(device) else: output[k] = v return output model = model_class(config) output = model(**cast_to_device(inputs_dict, "cpu")) model.parallelize() parallel_output = model(**cast_to_device(inputs_dict, "cuda:0")) for value, parallel_value in zip(output, parallel_output): if isinstance(value, torch.Tensor): self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7)) elif isinstance(value, (Tuple, List)): for value_, parallel_value_ in zip(value, parallel_value): self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7)) @require_torch_multi_gpu def test_model_parallel_beam_search(self): if not self.test_model_parallel: return all_generative_and_parallelizable_model_classes = tuple( set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes) ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in all_generative_and_parallelizable_model_classes: inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) def cast_to_device(dictionary, device): output = {} for k, v in dictionary.items(): if isinstance(v, torch.Tensor): output[k] = v.to(device) else: output[k] = v return output model.parallelize() model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2) def check_device_map_is_respected(self, model, device_map): for param_name, param in model.named_parameters(): # Find device in device_map while len(param_name) > 0 and param_name not in device_map: param_name = ".".join(param_name.split(".")[:-1]) if param_name not in device_map: raise ValueError("device map is incomplete, it does not contain any device for `param_name`.") param_device = device_map[param_name] if param_device in ["cpu", "disk"]: self.assertEqual(param.device, torch.device("meta")) else: self.assertEqual(param.device, torch.device(param_device)) @require_accelerate @mark.accelerate_tests @require_torch_gpu def test_disk_offload(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) with self.assertRaises(ValueError): max_size = int(self.model_split_percents[0] * model_size) max_memory = {0: max_size, "cpu": max_size} # This errors out cause it's missing an offload folder new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) max_size = int(self.model_split_percents[1] * model_size) max_memory = {0: max_size, "cpu": max_size} new_model = model_class.from_pretrained( tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir ) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) @require_accelerate @mark.accelerate_tests @require_torch_gpu def test_cpu_offload(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] # We test several splits of sizes to make sure it works. max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) for max_size in max_gpu_sizes: max_memory = {0: max_size, "cpu": model_size * 2} new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) # Making sure part of the model will actually end up offloaded self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"}) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) @require_accelerate @mark.accelerate_tests @require_torch_multi_gpu def test_model_parallelism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] # We test several splits of sizes to make sure it works. max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) for max_size in max_gpu_sizes: max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2} new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) # Making sure part of the model will actually end up offloaded self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1}) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if model_class.__name__ not in [ *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), ]: continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() def test_load_with_mismatched_shapes(self): if not self.test_mismatched_shapes: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): continue with self.subTest(msg=f"Testing {model_class}"): with tempfile.TemporaryDirectory() as tmp_dir: model = model_class(config) model.save_pretrained(tmp_dir) # Fails when we don't set ignore_mismatched_sizes=True with self.assertRaises(RuntimeError): new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) with self.assertRaises(RuntimeError): new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10) logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: new_model = AutoModelForSequenceClassification.from_pretrained( tmp_dir, num_labels=42, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) new_model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) logits = new_model(**inputs).logits self.assertEqual(logits.shape[1], 42) with CaptureLogger(logger) as cl: new_model_without_prefix = AutoModel.from_pretrained( tmp_dir, vocab_size=10, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) input_ids = ids_tensor((2, 8), 10) new_model_without_prefix.to(torch_device) if self.is_encoder_decoder: new_model_without_prefix(input_ids, decoder_input_ids=input_ids) else: new_model_without_prefix(input_ids) def test_model_is_small(self): # Just a consistency check to make sure we are not running tests on 80M parameter models. config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) num_params = model.num_parameters() assert ( num_params < 1000000 ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max." global_rng = random.Random() def ids_tensor(shape, vocab_size, rng=None, name=None): # Creates a random int32 tensor of the shape within the vocab size if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() def random_attention_mask(shape, rng=None, name=None): attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None) # make sure that at least one token is attended to for each batch attn_mask[:, -1] = 1 return attn_mask def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()