# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from parameterized import parameterized from transformers.testing_utils import require_flax, require_tf, require_torch, require_vision from transformers.utils.import_utils import is_flax_available, is_tf_available, is_torch_available, is_vision_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax if is_vision_available(): import PIL.Image from transformers.image_transforms import ( center_crop, center_to_corners_format, convert_to_rgb, corners_to_center_format, flip_channel_order, get_resize_output_image_size, id_to_rgb, normalize, pad, resize, rgb_to_id, to_channel_dimension_format, to_pil_image, ) def get_random_image(height, width, num_channels=3, channels_first=True): shape = (num_channels, height, width) if channels_first else (height, width, num_channels) random_array = np.random.randint(0, 256, shape, dtype=np.uint8) return random_array @require_vision class ImageTransformsTester(unittest.TestCase): @parameterized.expand( [ ("numpy_float_channels_first", (3, 4, 5), np.float32), ("numpy_float_channels_last", (4, 5, 3), np.float32), ("numpy_float_channels_first", (3, 4, 5), np.float64), ("numpy_float_channels_last", (4, 5, 3), np.float64), ("numpy_int_channels_first", (3, 4, 5), np.int32), ("numpy_uint_channels_first", (3, 4, 5), np.uint8), ] ) @require_vision def test_to_pil_image(self, name, image_shape, dtype): image = np.random.randint(0, 256, image_shape).astype(dtype) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) # make sure image is correctly rescaled self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0) @parameterized.expand( [ ("numpy_float_channels_first", (3, 4, 5), np.float32), ("numpy_float_channels_first", (3, 4, 5), np.float64), ("numpy_float_channels_last", (4, 5, 3), np.float32), ("numpy_float_channels_last", (4, 5, 3), np.float64), ] ) @require_vision def test_to_pil_image_from_float(self, name, image_shape, dtype): image = np.random.rand(*image_shape).astype(dtype) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) # make sure image is correctly rescaled self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0) # Make sure that an exception is raised if image is not in [0, 1] image = np.random.randn(*image_shape).astype(dtype) with self.assertRaises(ValueError): to_pil_image(image) @require_vision def test_to_pil_image_from_mask(self): # Make sure binary mask remains a binary mask image = np.random.randint(0, 2, (3, 4, 5)).astype(np.uint8) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) np_img = np.asarray(pil_image) self.assertTrue(np_img.min() == 0) self.assertTrue(np_img.max() == 1) image = np.random.randint(0, 2, (3, 4, 5)).astype(np.float32) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) np_img = np.asarray(pil_image) self.assertTrue(np_img.min() == 0) self.assertTrue(np_img.max() == 1) @require_tf def test_to_pil_image_from_tensorflow(self): # channels_first image = tf.random.uniform((3, 4, 5)) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) # channels_last image = tf.random.uniform((4, 5, 3)) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) @require_torch def test_to_pil_image_from_torch(self): # channels first image = torch.rand((3, 4, 5)) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) # channels last image = torch.rand((4, 5, 3)) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) @require_flax def test_to_pil_image_from_jax(self): key = jax.random.PRNGKey(0) # channel first image = jax.random.uniform(key, (3, 4, 5)) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) # channel last image = jax.random.uniform(key, (4, 5, 3)) pil_image = to_pil_image(image) self.assertIsInstance(pil_image, PIL.Image.Image) self.assertEqual(pil_image.size, (5, 4)) def test_to_channel_dimension_format(self): # Test that function doesn't reorder if channel dim matches the input. image = np.random.rand(3, 4, 5) image = to_channel_dimension_format(image, "channels_first") self.assertEqual(image.shape, (3, 4, 5)) image = np.random.rand(4, 5, 3) image = to_channel_dimension_format(image, "channels_last") self.assertEqual(image.shape, (4, 5, 3)) # Test that function reorders if channel dim doesn't match the input. image = np.random.rand(3, 4, 5) image = to_channel_dimension_format(image, "channels_last") self.assertEqual(image.shape, (4, 5, 3)) image = np.random.rand(4, 5, 3) image = to_channel_dimension_format(image, "channels_first") self.assertEqual(image.shape, (3, 4, 5)) # Can pass in input_data_format and works if data format is ambiguous or unknown. image = np.random.rand(4, 5, 6) image = to_channel_dimension_format(image, "channels_first", input_channel_dim="channels_last") self.assertEqual(image.shape, (6, 4, 5)) def test_get_resize_output_image_size(self): image = np.random.randint(0, 256, (3, 224, 224)) # Test the output size defaults to (x, x) if an int is given. self.assertEqual(get_resize_output_image_size(image, 10), (10, 10)) self.assertEqual(get_resize_output_image_size(image, [10]), (10, 10)) self.assertEqual(get_resize_output_image_size(image, (10,)), (10, 10)) # Test the output size is the same as the input if a two element tuple/list is given. self.assertEqual(get_resize_output_image_size(image, (10, 20)), (10, 20)) self.assertEqual(get_resize_output_image_size(image, [10, 20]), (10, 20)) self.assertEqual(get_resize_output_image_size(image, (10, 20), default_to_square=True), (10, 20)) # To match pytorch behaviour, max_size is only relevant if size is an int self.assertEqual(get_resize_output_image_size(image, (10, 20), max_size=5), (10, 20)) # Test output size = (int(size * height / width), size) if size is an int and height > width image = np.random.randint(0, 256, (3, 50, 40)) self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (25, 20)) # Test output size = (size, int(size * width / height)) if size is an int and width <= height image = np.random.randint(0, 256, (3, 40, 50)) self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (20, 25)) # Test size is resized if longer size > max_size image = np.random.randint(0, 256, (3, 50, 40)) self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False, max_size=22), (22, 17)) # Test output size = (int(size * height / width), size) if size is an int and height > width and # input has 4 channels image = np.random.randint(0, 256, (4, 50, 40)) self.assertEqual( get_resize_output_image_size(image, 20, default_to_square=False, input_data_format="channels_first"), (25, 20), ) # Test correct channel dimension is returned if output size if height == 3 # Defaults to input format - channels first image = np.random.randint(0, 256, (3, 18, 97)) resized_image = resize(image, (3, 20)) self.assertEqual(resized_image.shape, (3, 3, 20)) # Defaults to input format - channels last image = np.random.randint(0, 256, (18, 97, 3)) resized_image = resize(image, (3, 20)) self.assertEqual(resized_image.shape, (3, 20, 3)) image = np.random.randint(0, 256, (3, 18, 97)) resized_image = resize(image, (3, 20), data_format="channels_last") self.assertEqual(resized_image.shape, (3, 20, 3)) image = np.random.randint(0, 256, (18, 97, 3)) resized_image = resize(image, (3, 20), data_format="channels_first") self.assertEqual(resized_image.shape, (3, 3, 20)) def test_resize(self): image = np.random.randint(0, 256, (3, 224, 224)) # Check the channel order is the same by default resized_image = resize(image, (30, 40)) self.assertIsInstance(resized_image, np.ndarray) self.assertEqual(resized_image.shape, (3, 30, 40)) # Check channel order is changed if specified resized_image = resize(image, (30, 40), data_format="channels_last") self.assertIsInstance(resized_image, np.ndarray) self.assertEqual(resized_image.shape, (30, 40, 3)) # Check PIL.Image.Image is returned if return_numpy=False resized_image = resize(image, (30, 40), return_numpy=False) self.assertIsInstance(resized_image, PIL.Image.Image) # PIL size is in (width, height) order self.assertEqual(resized_image.size, (40, 30)) # Check an image with float values between 0-1 is returned with values in this range image = np.random.rand(3, 224, 224) resized_image = resize(image, (30, 40)) self.assertIsInstance(resized_image, np.ndarray) self.assertEqual(resized_image.shape, (3, 30, 40)) self.assertTrue(np.all(resized_image >= 0)) self.assertTrue(np.all(resized_image <= 1)) # Check that an image with 4 channels is resized correctly image = np.random.randint(0, 256, (4, 224, 224)) resized_image = resize(image, (30, 40), input_data_format="channels_first") self.assertIsInstance(resized_image, np.ndarray) self.assertEqual(resized_image.shape, (4, 30, 40)) def test_normalize(self): image = np.random.randint(0, 256, (224, 224, 3)) / 255 # Test that exception is raised if inputs are incorrect # Not a numpy array image with self.assertRaises(ValueError): normalize(5, 5, 5) # Number of mean values != number of channels with self.assertRaises(ValueError): normalize(image, mean=(0.5, 0.6), std=1) # Number of std values != number of channels with self.assertRaises(ValueError): normalize(image, mean=1, std=(0.5, 0.6)) # Test result is correct - output data format is channels_first and normalization # correctly computed mean = (0.5, 0.6, 0.7) std = (0.1, 0.2, 0.3) expected_image = ((image - mean) / std).transpose((2, 0, 1)) normalized_image = normalize(image, mean=mean, std=std, data_format="channels_first") self.assertIsInstance(normalized_image, np.ndarray) self.assertEqual(normalized_image.shape, (3, 224, 224)) self.assertTrue(np.allclose(normalized_image, expected_image)) # Test image with 4 channels is normalized correctly image = np.random.randint(0, 256, (224, 224, 4)) / 255 mean = (0.5, 0.6, 0.7, 0.8) std = (0.1, 0.2, 0.3, 0.4) expected_image = (image - mean) / std self.assertTrue( np.allclose(normalize(image, mean=mean, std=std, input_data_format="channels_last"), expected_image) ) def test_center_crop(self): image = np.random.randint(0, 256, (3, 224, 224)) # Test that exception is raised if inputs are incorrect with self.assertRaises(ValueError): center_crop(image, 10) # Test result is correct - output data format is channels_first and center crop # correctly computed expected_image = image[:, 52:172, 82:142].transpose(1, 2, 0) cropped_image = center_crop(image, (120, 60), data_format="channels_last") self.assertIsInstance(cropped_image, np.ndarray) self.assertEqual(cropped_image.shape, (120, 60, 3)) self.assertTrue(np.allclose(cropped_image, expected_image)) # Test that image is padded with zeros if crop size is larger than image size expected_image = np.zeros((300, 260, 3)) expected_image[38:262, 18:242, :] = image.transpose((1, 2, 0)) cropped_image = center_crop(image, (300, 260), data_format="channels_last") self.assertIsInstance(cropped_image, np.ndarray) self.assertEqual(cropped_image.shape, (300, 260, 3)) self.assertTrue(np.allclose(cropped_image, expected_image)) # Test image with 4 channels is cropped correctly image = np.random.randint(0, 256, (224, 224, 4)) expected_image = image[52:172, 82:142, :] self.assertTrue(np.allclose(center_crop(image, (120, 60), input_data_format="channels_last"), expected_image)) def test_center_to_corners_format(self): bbox_center = np.array([[10, 20, 4, 8], [15, 16, 3, 4]]) expected = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]]) self.assertTrue(np.allclose(center_to_corners_format(bbox_center), expected)) # Check that the function and inverse function are inverse of each other self.assertTrue(np.allclose(corners_to_center_format(center_to_corners_format(bbox_center)), bbox_center)) def test_corners_to_center_format(self): bbox_corners = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]]) expected = np.array([[10, 20, 4, 8], [15, 16, 3, 4]]) self.assertTrue(np.allclose(corners_to_center_format(bbox_corners), expected)) # Check that the function and inverse function are inverse of each other self.assertTrue(np.allclose(center_to_corners_format(corners_to_center_format(bbox_corners)), bbox_corners)) def test_rgb_to_id(self): # test list input rgb = [125, 4, 255] self.assertEqual(rgb_to_id(rgb), 16712829) # test numpy array input color = np.array( [ [ [213, 54, 165], [88, 207, 39], [156, 108, 128], ], [ [183, 194, 46], [137, 58, 88], [114, 131, 233], ], ] ) expected = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]]) self.assertTrue(np.allclose(rgb_to_id(color), expected)) def test_id_to_rgb(self): # test int input self.assertEqual(id_to_rgb(16712829), [125, 4, 255]) # test array input id_array = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]]) color = np.array( [ [ [213, 54, 165], [88, 207, 39], [156, 108, 128], ], [ [183, 194, 46], [137, 58, 88], [114, 131, 233], ], ] ) self.assertTrue(np.allclose(id_to_rgb(id_array), color)) def test_pad(self): # fmt: off image = np.array([[ [0, 1], [2, 3], ]]) # fmt: on # Test that exception is raised if unknown padding mode is specified with self.assertRaises(ValueError): pad(image, 10, mode="unknown") # Test that exception is raised if invalid padding is specified with self.assertRaises(ValueError): # Cannot pad on channel dimension pad(image, (5, 10, 10)) # Test image is padded equally on all sides is padding is an int # fmt: off expected_image = np.array([ [[0, 0, 0, 0], [0, 0, 1, 0], [0, 2, 3, 0], [0, 0, 0, 0]], ]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, 1))) # Test the left and right of each axis is padded (pad_left, pad_right) # fmt: off expected_image = np.array( [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 2, 3, 0], [0, 0, 0, 0, 0]]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, (2, 1)))) # Test only one axis is padded (pad_left, pad_right) # fmt: off expected_image = np.array([[ [9, 9], [9, 9], [0, 1], [2, 3], [9, 9] ]]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, ((2, 1), (0, 0)), constant_values=9))) # Test padding with a constant value # fmt: off expected_image = np.array([[ [8, 8, 0, 1, 9], [8, 8, 2, 3, 9], [8, 8, 7, 7, 9], [8, 8, 7, 7, 9] ]]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), constant_values=((6, 7), (8, 9))))) # fmt: off image = np.array([[ [0, 1, 2], [3, 4, 5], [6, 7, 8], ]]) # fmt: on # Test padding with PaddingMode.REFLECT # fmt: off expected_image = np.array([[ [2, 1, 0, 1, 2, 1], [5, 4, 3, 4, 5, 4], [8, 7, 6, 7, 8, 7], [5, 4, 3, 4, 5, 4], [2, 1, 0, 1, 2, 1], ]]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect"))) # Test padding with PaddingMode.REPLICATE # fmt: off expected_image = np.array([[ [0, 0, 0, 1, 2, 2], [3, 3, 3, 4, 5, 5], [6, 6, 6, 7, 8, 8], [6, 6, 6, 7, 8, 8], [6, 6, 6, 7, 8, 8], ]]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="replicate"))) # Test padding with PaddingMode.SYMMETRIC # fmt: off expected_image = np.array([[ [1, 0, 0, 1, 2, 2], [4, 3, 3, 4, 5, 5], [7, 6, 6, 7, 8, 8], [7, 6, 6, 7, 8, 8], [4, 3, 3, 4, 5, 5], ]]) # fmt: on self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="symmetric"))) # Test we can specify the output data format # Test padding with PaddingMode.REFLECT # fmt: off image = np.array([[ [0, 1], [2, 3], ]]) expected_image = np.array([ [[0], [1], [0], [1], [0]], [[2], [3], [2], [3], [2]], [[0], [1], [0], [1], [0]], [[2], [3], [2], [3], [2]] ]) # fmt: on self.assertTrue( np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect", data_format="channels_last")) ) # Test we can pad on an image with 2 channels # fmt: off image = np.array([ [[0, 1], [2, 3]], ]) expected_image = np.array([ [[0, 0], [0, 1], [2, 3]], [[0, 0], [0, 0], [0, 0]], ]) # fmt: on self.assertTrue( np.allclose( expected_image, pad(image, ((0, 1), (1, 0)), mode="constant", input_data_format="channels_last") ) ) @require_vision def test_convert_to_rgb(self): # Test that an RGBA image is converted to RGB image = np.array([[[1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.uint8) pil_image = PIL.Image.fromarray(image) self.assertEqual(pil_image.mode, "RGBA") self.assertEqual(pil_image.size, (2, 1)) # For the moment, numpy images are returned as is rgb_image = convert_to_rgb(image) self.assertEqual(rgb_image.shape, (1, 2, 4)) self.assertTrue(np.allclose(rgb_image, image)) # And PIL images are converted rgb_image = convert_to_rgb(pil_image) self.assertEqual(rgb_image.mode, "RGB") self.assertEqual(rgb_image.size, (2, 1)) self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[1, 2, 3], [5, 6, 7]]], dtype=np.uint8))) # Test that a grayscale image is converted to RGB image = np.array([[0, 255]], dtype=np.uint8) pil_image = PIL.Image.fromarray(image) self.assertEqual(pil_image.mode, "L") self.assertEqual(pil_image.size, (2, 1)) rgb_image = convert_to_rgb(pil_image) self.assertEqual(rgb_image.mode, "RGB") self.assertEqual(rgb_image.size, (2, 1)) self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[0, 0, 0], [255, 255, 255]]], dtype=np.uint8))) def test_flip_channel_order(self): # fmt: off img_channels_first = np.array([ [[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]], [[16, 17, 18, 19], [20, 21, 22, 23]], ]) # fmt: on img_channels_last = np.moveaxis(img_channels_first, 0, -1) # fmt: off flipped_img_channels_first = np.array([ [[16, 17, 18, 19], [20, 21, 22, 23]], [[ 8, 9, 10, 11], [12, 13, 14, 15]], [[ 0, 1, 2, 3], [ 4, 5, 6, 7]], ]) # fmt: on flipped_img_channels_last = np.moveaxis(flipped_img_channels_first, 0, -1) self.assertTrue(np.allclose(flip_channel_order(img_channels_first), flipped_img_channels_first)) self.assertTrue( np.allclose(flip_channel_order(img_channels_first, "channels_last"), flipped_img_channels_last) ) self.assertTrue(np.allclose(flip_channel_order(img_channels_last), flipped_img_channels_last)) self.assertTrue( np.allclose(flip_channel_order(img_channels_last, "channels_first"), flipped_img_channels_first) ) # Can flip when the image has 2 channels # fmt: off img_channels_first = np.array([ [[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]], ]) # fmt: on flipped_img_channels_first = img_channels_first[::-1, :, :] self.assertTrue( np.allclose( flip_channel_order(img_channels_first, input_data_format="channels_first"), flipped_img_channels_first ) )