# Training a masked language model end-to-end from scratch on TPUs In this example, we're going to demonstrate how to train a TensorFlow model from 🤗 Transformers from scratch. If you're interested in some background theory on training Hugging Face models with TensorFlow on TPU, please check out our [tutorial doc](https://huggingface.co/docs/transformers/main/perf_train_tpu_tf) on this topic! If you're interested in smaller-scale TPU training from a pre-trained checkpoint, you can also check out the [TPU fine-tuning example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb). This example will demonstrate pre-training language models at the 100M-1B parameter scale, similar to BERT or GPT-2. More concretely, we will show how to train a [RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta) (base model) from scratch on the [WikiText dataset (v1)](https://huggingface.co/datasets/wikitext). We've tried to ensure that all the practices we show you here are scalable, though - with relatively few changes, the code could be scaled up to much larger models. Google's gargantuan [PaLM model](https://arxiv.org/abs/2204.02311), with over 500B parameters, is a good example of how far you can go with pure TPU training, though gathering the dataset and the budget to train at that scale is not an easy task! ### Table of contents - [Setting up a TPU-VM](#setting-up-a-tpu-vm) - [Training a tokenizer](#training-a-tokenizer) - [Preparing the dataset](#preparing-the-dataset) - [Training the model](#training-the-model) - [Inference](#inference) ## Setting up a TPU-VM Since this example focuses on using TPUs, the first step is to set up access to TPU hardware. For this example, we chose to use a TPU v3-8 VM. Follow [this guide](https://cloud.google.com/tpu/docs/run-calculation-tensorflow) to quickly create a TPU VM with TensorFlow pre-installed. > 💡 **Note**: You don't need a TPU-enabled hardware for tokenizer training and TFRecord shard preparation. ## Training a tokenizer To train a language model from scratch, the first step is to tokenize text. In most Hugging Face examples, we begin from a pre-trained model and use its tokenizer. However, in this example, we're going to train a tokenizer from scratch as well. The script for this is `train_unigram.py`. An example command is: ```bash python train_unigram.py --batch_size 1000 --vocab_size 25000 --export_to_hub ``` The script will automatically load the `train` split of the WikiText dataset and train a [Unigram tokenizer](https://huggingface.co/course/chapter6/7?fw=pt) on it. > 💡 **Note**: In order for `export_to_hub` to work, you must authenticate yourself with the `huggingface-cli`. Run `huggingface-cli login` and follow the on-screen instructions. ## Preparing the dataset The next step is to prepare the dataset. This consists of loading a text dataset from the Hugging Face Hub, tokenizing it and grouping it into chunks of a fixed length ready for training. The script for this is `prepare_tfrecord_shards.py`. The reason we create TFRecord output files from this step is that these files work well with [`tf.data` pipelines](https://www.tensorflow.org/guide/data_performance). This makes them very suitable for scalable TPU training - the dataset can easily be sharded and read in parallel just by tweaking a few parameters in the pipeline. An example command is: ```bash python prepare_tfrecord_shards.py \ --tokenizer_name_or_path tf-tpu/unigram-tokenizer-wikitext \ --shard_size 5000 \ --split test --max_length 128 \ --output_dir gs://tf-tpu-training-resources ``` **Notes**: * While running the above script, you need to specify the `split` accordingly. The example command above will only filter the `test` split of the dataset. * If you append `gs://` in your `output_dir` the TFRecord shards will be directly serialized to a Google Cloud Storage (GCS) bucket. Ensure that you have already [created the GCS bucket](https://cloud.google.com/storage/docs). * If you're using a TPU node, you must stream data from a GCS bucket. Otherwise, if you're using a TPU VM,you can store the data locally. You may need to [attach](https://cloud.google.com/tpu/docs/setup-persistent-disk) a persistent storage to the VM. * Additional CLI arguments are also supported. We encourage you to run `python prepare_tfrecord_shards.py -h` to know more about them. ## Training the model Once that's done, the model is ready for training. By default, training takes place on TPU, but you can use the `--no_tpu` flag to train on CPU for testing purposes. An example command is: ```bash python3 run_mlm.py \ --train_dataset gs://tf-tpu-training-resources/train/ \ --eval_dataset gs://tf-tpu-training-resources/validation/ \ --tokenizer tf-tpu/unigram-tokenizer-wikitext \ --output_dir trained_model ``` If you had specified a `hub_model_id` while launching training, then your model will be pushed to a model repository on the Hugging Face Hub. You can find such an example repository here: [tf-tpu/roberta-base-epochs-500-no-wd](https://huggingface.co/tf-tpu/roberta-base-epochs-500-no-wd). ## Inference Once the model is trained, you can use 🤗 Pipelines to perform inference: ```python from transformers import pipeline model_id = "tf-tpu/roberta-base-epochs-500-no-wd" unmasker = pipeline("fill-mask", model=model_id, framework="tf") unmasker("Goal of my life is to [MASK].") [{'score': 0.1003185287117958, 'token': 52, 'token_str': 'be', 'sequence': 'Goal of my life is to be.'}, {'score': 0.032648514956235886, 'token': 5, 'token_str': '', 'sequence': 'Goal of my life is to .'}, {'score': 0.02152673341333866, 'token': 138, 'token_str': 'work', 'sequence': 'Goal of my life is to work.'}, {'score': 0.019547373056411743, 'token': 984, 'token_str': 'act', 'sequence': 'Goal of my life is to act.'}, {'score': 0.01939118467271328, 'token': 73, 'token_str': 'have', 'sequence': 'Goal of my life is to have.'}] ``` You can also try out inference using the [Inference Widget](https://huggingface.co/tf-tpu/roberta-base-epochs-500-no-wd?text=Goal+of+my+life+is+to+%5BMASK%5D.) from the model page.