# coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=fill-mask """ import logging import os import sys from dataclasses import dataclass, field # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. from pathlib import Path from typing import Dict, List, Optional, Tuple import jax import jax.numpy as jnp import numpy as np from datasets import load_dataset from flax import jax_utils from flax.optim import Adam from flax.training import common_utils from flax.training.common_utils import get_metrics from jax.nn import log_softmax from modeling_flax_performer import FlaxPerformerForMaskedLM from tqdm import tqdm from transformers import ( MODEL_FOR_MASKED_LM_MAPPING, AutoTokenizer, BertConfig, FlaxBertForMaskedLM, HfArgumentParser, PreTrainedTokenizerBase, TensorType, TrainingArguments, is_tensorboard_available, set_seed, ) # Cache the result has_tensorboard = is_tensorboard_available() if has_tensorboard: try: from flax.metrics.tensorboard import SummaryWriter except ImportError as ie: has_tensorboard = False print(f"Unable to display metrics through TensorBoard because some package are not installed: {ie}") else: print( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class WandbArguments: """ Arguments for logging """ wandb_user_name: Optional[str] = field( default=None, metadata={"help": "The WandB user name for potential logging. If left None, no logging"}, ) wandb_project_name: Optional[str] = field( default="performer-experiments", metadata={"help": "The WandB project name for potential logging"}, ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) performer: bool = field( default=False, metadata={"help": "Whether to use FAVOR+ attention"}, ) reinitialize: bool = field( default=False, metadata={"help": "Whether to use a blank model without pretraining"}, ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, ) validation_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." # Adapted from transformers/data/data_collator.py # Letting here for now, let's discuss where it should live @dataclass class FlaxDataCollatorForLanguageModeling: """ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they are not all of the same length. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. mlm (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to use masked language modeling. If set to :obj:`False`, the labels are the same as the inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked tokens and the value to predict for the masked token. mlm_probability (:obj:`float`, `optional`, defaults to 0.15): The probability with which to (randomly) mask tokens in the input, when :obj:`mlm` is set to :obj:`True`. .. note:: For best performance, this data collator should be used with a dataset having items that are dictionaries or BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the argument :obj:`return_special_tokens_mask=True`. """ tokenizer: PreTrainedTokenizerBase mlm: bool = True mlm_probability: float = 0.15 def __post_init__(self): if self.mlm and self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. " "You should pass `mlm=False` to train on causal language modeling instead." ) def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]: # Handle dict or lists with proper padding and conversion to tensor. batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY) # If special token mask has been preprocessed, pop it from the dict. special_tokens_mask = batch.pop("special_tokens_mask", None) if self.mlm: batch["input_ids"], batch["labels"] = self.mask_tokens( batch["input_ids"], special_tokens_mask=special_tokens_mask ) else: labels = batch["input_ids"].copy() if self.tokenizer.pad_token_id is not None: labels[labels == self.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch def mask_tokens( self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray] ) -> Tuple[jnp.ndarray, jnp.ndarray]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ labels = inputs.copy() # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) probability_matrix = np.full(labels.shape, self.mlm_probability) special_tokens_mask = special_tokens_mask.astype("bool") probability_matrix[special_tokens_mask] = 0.0 masked_indices = np.random.binomial(1, probability_matrix).astype("bool") labels[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool") indices_random &= masked_indices & ~indices_replaced random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4") inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels def create_learning_rate_scheduler( factors="constant * linear_warmup * rsqrt_decay", base_learning_rate=0.5, warmup_steps=1000, decay_factor=0.5, steps_per_decay=20000, steps_per_cycle=100000, ): """Creates learning rate schedule. Interprets factors in the factors string which can consist of: * constant: interpreted as the constant value, * linear_warmup: interpreted as linear warmup until warmup_steps, * rsqrt_decay: divide by square root of max(step, warmup_steps) * rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1) * decay_every: Every k steps decay the learning rate by decay_factor. * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter. Args: factors: string, factors separated by "*" that defines the schedule. base_learning_rate: float, the starting constant for the lr schedule. warmup_steps: int, how many steps to warm up for in the warmup schedule. decay_factor: float, the amount to decay the learning rate by. steps_per_decay: int, how often to decay the learning rate. steps_per_cycle: int, steps per cycle when using cosine decay. Returns: a function learning_rate(step): float -> {"learning_rate": float}, the step-dependent lr. """ factors = [n.strip() for n in factors.split("*")] def step_fn(step): """Step to learning rate function.""" ret = 1.0 for name in factors: if name == "constant": ret *= base_learning_rate elif name == "linear_warmup": ret *= jnp.minimum(1.0, step / warmup_steps) elif name == "rsqrt_decay": ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == "rsqrt_normalized_decay": ret *= jnp.sqrt(warmup_steps) ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == "decay_every": ret *= decay_factor ** (step // steps_per_decay) elif name == "cosine_decay": progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle)) ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0)))) else: raise ValueError("Unknown factor %s." % name) return jnp.asarray(ret, dtype=jnp.float32) return step_fn def compute_metrics(logits, labels, weights, label_smoothing=0.0): """Compute summary metrics.""" loss, normalizer = cross_entropy(logits, labels, weights, label_smoothing) acc, _ = accuracy(logits, labels, weights) metrics = {"loss": loss, "accuracy": acc, "normalizer": normalizer} metrics = jax.lax.psum(metrics, axis_name="batch") return metrics def accuracy(logits, targets, weights=None): """Compute weighted accuracy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. weights: None or array of shape [batch, length] Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError( "Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape)) ) loss = jnp.equal(jnp.argmax(logits, axis=-1), targets) loss *= weights return loss.sum(), weights.sum() def cross_entropy(logits, targets, weights=None, label_smoothing=0.0): """Compute cross entropy and entropy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. weights: None or array of shape [batch, length] label_smoothing: label smoothing constant, used to determine the on and off values. Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError( "Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape)) ) vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) ) soft_targets = common_utils.onehot(targets, vocab_size, on_value=confidence, off_value=low_confidence) loss = -jnp.sum(soft_targets * log_softmax(logits), axis=-1) loss = loss - normalizing_constant if weights is not None: loss = loss * weights normalizing_factor = weights.sum() else: normalizing_factor = np.prod(targets.shape) return loss.sum(), normalizing_factor def training_step(optimizer, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): targets = batch.pop("labels") # Hide away tokens which doesn't participate in the optimization token_mask = jnp.where(targets > 0, 1.0, 0.0) logits = model(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss, weight_sum = cross_entropy(logits, targets, token_mask) return loss / weight_sum step = optimizer.state.step lr = lr_scheduler_fn(step) grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(optimizer.target) grad = jax.lax.pmean(grad, "batch") optimizer = optimizer.apply_gradient(grad, learning_rate=lr) return loss, optimizer, new_dropout_rng def eval_step(params, batch): """ Calculate evaluation metrics on a batch. """ targets = batch.pop("labels") # Hide away tokens which doesn't participate in the optimization token_mask = jnp.where(targets > 0, 1.0, 0.0) logits = model(**batch, params=params, train=False)[0] return compute_metrics(logits, targets, token_mask) def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray: nb_samples = len(samples_idx) samples_to_remove = nb_samples % batch_size if samples_to_remove != 0: samples_idx = samples_idx[:-samples_to_remove] sections_split = nb_samples // batch_size batch_idx = np.split(samples_idx, sections_split) return batch_idx if __name__ == "__main__": # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, WandbArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args, wandb_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args, wandb_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level="NOTSET", datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) config = BertConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) lm_class = FlaxPerformerForMaskedLM if model_args.performer else FlaxBertForMaskedLM if model_args.reinitialize: model = lm_class(config=BertConfig.from_pretrained(model_args.model_name_or_path)) else: model = lm_class.from_pretrained( model_args.model_name_or_path, dtype=jnp.float32, input_shape=(training_args.train_batch_size, config.max_position_embeddings), seed=training_args.seed, dropout_rate=0.1, ) if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] padding = "max_length" if data_args.pad_to_max_length else False def tokenize_function(examples): # Remove empty lines examples = [line for line in examples if len(line) > 0 and not line.isspace()] return tokenizer( examples, return_special_tokens_mask=True, padding=padding, truncation=True, max_length=data_args.max_seq_length, ) tokenized_datasets = datasets.map( tokenize_function, input_columns=[text_column_name], batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node if has_tensorboard and jax.host_id() == 0: summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()) # Data collator # This one will take care of randomly masking the tokens. data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) # Setup optimizer optimizer = Adam( learning_rate=training_args.learning_rate, weight_decay=training_args.weight_decay, beta1=training_args.adam_beta1, beta2=training_args.adam_beta2, ).create(model.params) # Create learning rate scheduler lr_scheduler_fn = create_learning_rate_scheduler( base_learning_rate=training_args.learning_rate, warmup_steps=max(training_args.warmup_steps, 1) ) # Create parallel version of the training and evaluation steps p_training_step = jax.pmap(training_step, "batch", donate_argnums=(0,)) p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the optimizer on each device optimizer = jax_utils.replicate(optimizer) # Store some constant nb_epochs = int(training_args.num_train_epochs) batch_size = int(training_args.train_batch_size) eval_batch_size = int(training_args.eval_batch_size) if wandb_args.wandb_user_name is not None: import wandb wandb.init(project=wandb_args.wandb_project_name, entity=wandb_args.wandb_user_name) epochs = tqdm(range(nb_epochs), desc=f"Epoch ... (1/{nb_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ # Create sampling rng rng, training_rng, eval_rng = jax.random.split(rng, 3) # Generate an epoch by shuffling sampling indices from the train dataset nb_training_samples = len(tokenized_datasets["train"]) # Avoid using jax.numpy here in case of TPU training training_samples_idx = np.random.permutation(np.arange(nb_training_samples)) training_batch_idx = generate_batch_splits(training_samples_idx, batch_size) # Gather the indexes for creating the batch and do a training step for batch_idx in tqdm(training_batch_idx, desc="Training...", position=1): samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples, pad_to_multiple_of=16) # Model forward model_inputs = common_utils.shard(model_inputs.data) loss, optimizer, dropout_rngs = p_training_step(optimizer, model_inputs, dropout_rngs) if wandb_args.wandb_user_name is not None: wandb.log({"Training loss": np.array(loss).mean()}) epochs.write(f"Loss: {loss}") # ======================== Evaluating ============================== nb_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(nb_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples, pad_to_multiple_of=16) # Model forward model_inputs = common_utils.shard(model_inputs.data) metrics = p_eval_step(optimizer.target, model_inputs) eval_metrics.append(metrics) eval_metrics_np = get_metrics(eval_metrics) eval_metrics_np = jax.tree_util.tree_map(jnp.sum, eval_metrics_np) eval_normalizer = eval_metrics_np.pop("normalizer") eval_summary = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics_np) # Update progress bar epochs.desc = ( f"Epoch... ({epoch + 1}/{nb_epochs} | Loss: {eval_summary['loss']}, Acc: {eval_summary['accuracy']})" ) if wandb_args.wandb_user_name is not None: wandb.log({"Eval loss": np.array(eval_summary["loss"]).mean()}) # Save metrics if has_tensorboard and jax.host_id() == 0: for name, value in eval_summary.items(): summary_writer.scalar(name, value, epoch)