# Language model training examples The following example showcases how to train a language model from scratch using the JAX/Flax backend. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. ## Masked language modeling In the following, we demonstrate how to train a bi-directional transformer model using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805). More specifically, we demonstrate how JAX/Flax can be leveraged to pre-train [**`roberta-base`**](https://huggingface.co/roberta-base) in Norwegian on a single TPUv3-8 pod. The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets. To setup all relevant files for training, let's create a directory. ```bash mkdir ./norwegian-roberta-base ``` ### Train tokenizer In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**. The tokenizer is trained on the complete Norwegian dataset of OSCAR and consequently saved in the cloned model directory. This can take up to 10 minutes depending on your hardware ☕. ```python from datasets import load_dataset from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer # load dataset dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train") # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=1000): for i in range(0, len(dataset), batch_size): yield dataset[i: i + batch_size]["text"] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ "", "", "", "", "", ]) # Save files to disk tokenizer.save("./norwegian-roberta-base/tokenizer.json") ``` ### Create configuration Next, we create the model's configuration file. This is as simple as loading and storing [`**roberta-base**`](https://huggingface.co/roberta-base) in the local model folder: ```python from transformers import RobertaConfig config = RobertaConfig.from_pretrained("roberta-base", vocab_size=50265) config.save_pretrained("./norwegian-roberta-base") ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. ### Train model Next we can run the example script to pretrain the model: ```bash python run_mlm_flax.py \ --output_dir="./norwegian-roberta-base" \ --model_type="roberta" \ --config_name="./norwegian-roberta-base" \ --tokenizer_name="./norwegian-roberta-base" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_no" \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="3e-4" \ --warmup_steps="1000" \ --overwrite_output_dir \ --num_train_epochs="18" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="500" \ --save_steps="2500" \ --eval_steps="2500" \ --push_to_hub ``` Training should converge at a loss and accuracy of 1.78 and 0.64 respectively after 18 epochs on a single TPUv3-8. This should take less than 18 hours. Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg). For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab. ## Causal language modeling In the following, we demonstrate how to train an auto-regressive causal transformer model in JAX/Flax. More specifically, we pretrain a randomly initialized [**`gpt2`**](https://huggingface.co/gpt2) model in Norwegian on a single TPUv3-8. to pre-train 124M [**`gpt2`**](https://huggingface.co/gpt2) in Norwegian on a single TPUv3-8 pod. The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets. To setup all relevant files for training, let's create a directory. ```bash mkdir ./norwegian-gpt2 ``` ### Train tokenizer In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**. The tokenizer is trained on the complete Norwegian dataset of OSCAR and consequently saved in the cloned model directory. This can take up to 10 minutes depending on your hardware ☕. ```python from datasets import load_dataset from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer # load dataset dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train") # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=1000): for i in range(0, len(dataset), batch_size): yield dataset[i: i + batch_size]["text"] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=50257, min_frequency=2, special_tokens=[ "", "", "", "", "", ]) # Save files to disk tokenizer.save("./norwegian-gpt2/tokenizer.json") ``` ### Create configuration Next, we create the model's configuration file. This is as simple as loading and storing [`**gpt2**`](https://huggingface.co/gpt2) in the local model folder: ```python from transformers import GPT2Config config = GPT2Config.from_pretrained("gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, vocab_size=50257) config.save_pretrained("./norwegian-gpt2") ``` Great, we have set up our model repository. During training, we will now automatically push the training logs and model weights to the repo. ### Train model Finally, we can run the example script to pretrain the model: ```bash python run_clm_flax.py \ --output_dir="./norwegian-gpt2" \ --model_type="gpt2" \ --config_name="./norwegian-gpt2" \ --tokenizer_name="./norwegian-gpt2" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_no" \ --do_train --do_eval \ --block_size="512" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="64" \ --learning_rate="5e-3" --warmup_steps="1000" \ --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \ --overwrite_output_dir \ --num_train_epochs="20" \ --logging_steps="500" \ --save_steps="2500" \ --eval_steps="2500" \ --push_to_hub ``` Training should converge at a loss and perplexity of 3.24 and 25.72 respectively after 20 epochs on a single TPUv3-8. This should take less than ~21 hours. Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA). For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab. ## T5-like span-masked language modeling In the following, we demonstrate how to train a T5 model using the span-masked language model objective as proposed in the [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683). More specifically, we demonstrate how JAX/Flax can be leveraged to pre-train [**`google/t5-v1_1-base`**](https://huggingface.co/google/t5-v1_1-base) in Norwegian on a single TPUv3-8 pod. The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets. Let's start by creating a model repository to save the trained model and logs. Here we call the model `"norwegian-t5-base"`, but you can change the model name as you like. To setup all relevant files for training, let's create a directory. ```bash cd ./norwegian-t5-base ``` ### Train tokenizer In the first step, we train a tokenizer to efficiently process the text input for the model. We make use of the [tokenizers](https://github.com/huggingface/tokenizers) library to train a sentencepiece unigram tokenizer as shown in [t5_tokenizer_model.py](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling/t5_tokenizer_model.py) which is heavily inspired from [yandex-research/DeDLOC's tokenizer model](https://github.com/yandex-research/DeDLOC/blob/5c994bc64e573702a9a79add3ecd68b38f14b548/sahajbert/tokenizer/tokenizer_model.py) . The tokenizer is trained on the complete Norwegian dataset of OSCAR and consequently saved in the cloned model directory. This can take up to 120 minutes depending on your hardware ☕☕☕ . ```python import datasets from t5_tokenizer_model import SentencePieceUnigramTokenizer vocab_size = 32_000 input_sentence_size = None # Initialize a dataset dataset = datasets.load_dataset("oscar", name="unshuffled_deduplicated_no", split="train") tokenizer = SentencePieceUnigramTokenizer(unk_token="", eos_token="", pad_token="") # Build an iterator over this dataset def batch_iterator(input_sentence_size=None): if input_sentence_size is None: input_sentence_size = len(dataset) batch_length = 100 for i in range(0, input_sentence_size, batch_length): yield dataset[i: i + batch_length]["text"] # Train tokenizer tokenizer.train_from_iterator( iterator=batch_iterator(input_sentence_size=input_sentence_size), vocab_size=vocab_size, show_progress=True, ) # Save files to disk tokenizer.save("./norwegian-t5-base/tokenizer.json") ``` ### Create configuration Next, we create the model's configuration file. This is as simple as loading and storing [`**google/t5-v1_1-base**`](https://huggingface.co/google/t5-v1_1-base) in the local model folder: ```python from transformers import T5Config config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size()) config.save_pretrained("./norwegian-t5-base") ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. ### Train model Next we can run the example script to pretrain the model: ```bash python run_t5_mlm_flax.py \ --output_dir="./norwegian-t5-base" \ --model_type="t5" \ --config_name="./norwegian-t5-base" \ --tokenizer_name="./norwegian-t5-base" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_no" \ --max_seq_length="512" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --adafactor \ --learning_rate="0.005" \ --weight_decay="0.001" \ --warmup_steps="2000" \ --overwrite_output_dir \ --logging_steps="500" \ --save_steps="10000" \ --eval_steps="2500" \ --push_to_hub ``` Training should converge at a loss and accuracy of 2.36 and 57.0 respectively after 3 epochs on a single TPUv3-8. This should take around 4.5 hours. Training statistics can be accessed on directly on the 🤗 [hub](https://huggingface.co/patrickvonplaten/t5-base-norwegian/tensorboard) ## BART: Denoising language modeling In the following, we demonstrate how to train a BART model using denoising language modeling objective as introduced in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461). More specifically, we demonstrate how JAX/Flax can be leveraged to pre-train [**`bart-base`**](https://huggingface.co/facebook/bart-base) in Norwegian on a single TPUv3-8 pod. The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets. To setup all relevant files for training, let's create a directory. ```bash mkdir ./norwegian-bart-base ``` ### Train tokenizer In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**. The tokenizer is trained on the complete Norwegian dataset of OSCAR and consequently saved in the cloned model directory. This can take up to 10 minutes depending on your hardware ☕. ```python from datasets import load_dataset from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer # load dataset dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train") # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=1000): for i in range(0, len(dataset), batch_size): yield dataset[i: i + batch_size]["text"] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ "", "", "", "", "", ]) # Save files to disk tokenizer.save("./norwegian-bart-base/tokenizer.json") ``` ### Create configuration Next, we create the model's configuration file. This is as simple as loading and storing [`**facebook/bart-base**`](https://huggingface.co/facebook/bart-base) in the local model folder: ```python from transformers import BartConfig config = BartConfig.from_pretrained("facebook/bart-base", vocab_size=50265) config.save_pretrained("./norwegian-bart-base") ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. ### Train model Next we can run the example script to pretrain the model: ```bash python run_bart_dlm_flax.py \ --output_dir="./norwegian-bart-base" \ --config_name="./norwegian-bart-base" \ --tokenizer_name="./norwegian-bart-base" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_no" \ --max_seq_length="1024" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --learning_rate="1e-4" \ --warmup_steps="2000" \ --overwrite_output_dir \ --logging_steps="500" \ --save_steps="2000" \ --eval_steps="2000" \ --push_to_hub ``` Training should converge at a loss and accuracy of 1.36 and 0.77 respectively after 3 epochs on a single TPUv3-8. This should take less than 6 hours. Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/Maw62QlaSXWS0MOf2V2lbg/). ## Runtime evaluation We also ran masked language modeling using PyTorch/XLA on a TPUv3-8, and PyTorch on 8 V100 GPUs. We report the overall training time below. For reproducibility, we state the training commands used for PyTorch/XLA and PyTorch further below. | Task | [TPU v3-8 (Flax)](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg/) | [TPU v3-8 (Pytorch/XLA)](https://tensorboard.dev/experiment/7Jq1kcQQRAmy12KOdXek7A/)| [8 GPU (PyTorch)](https://tensorboard.dev/experiment/PJneV8FQRxa2unPw1QnVHA) | |-------|-----------|------------|------------| | MLM | 15h32m | 23h46m | 44h14m | *All experiments are ran on Google Cloud Platform. GPU experiments are ran without further optimizations besides JAX transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8" are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips. ### Script to run MLM with PyTorch/XLA on TPUv3-8 For comparison one can run the same pre-training with PyTorch/XLA on TPU. To set up PyTorch/XLA on Cloud TPU VMs, please refer to [this](https://cloud.google.com/tpu/docs/pytorch-xla-ug-tpu-vm) guide. Having created the tokenzier and configuration in `norwegian-roberta-base`, we create the following symbolic links: ```bash ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./ ln -s ~/transformers/examples/pytorch/xla_spawn.py ./ ``` , set the following environment variables: ```bash export XRT_TPU_CONFIG="localservice;0;localhost:51011" unset LD_PRELOAD export NUM_TPUS=8 export TOKENIZERS_PARALLELISM=0 export MODEL_DIR="./norwegian-roberta-base" mkdir -p ${MODEL_DIR} ``` , and start training as follows: ```bash python3 xla_spawn.py --num_cores ${NUM_TPUS} run_mlm.py --output_dir="./runs" \ --model_type="roberta" \ --config_name="${MODEL_DIR}" \ --tokenizer_name="${MODEL_DIR}" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_no" \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="3e-4" \ --warmup_steps="1000" \ --overwrite_output_dir \ --num_train_epochs="18" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --do_train \ --do_eval \ --logging_steps="500" \ --evaluation_strategy="epoch" \ --report_to="tensorboard" \ --save_strategy="no" ``` ### Script to compare pre-training with PyTorch on 8 GPU V100's For comparison you can run the same pre-training with PyTorch on GPU. Note that we have to make use of `gradient_accumulation` because the maximum batch size that fits on a single V100 GPU is 32 instead of 128. Having created the tokenzier and configuration in `norwegian-roberta-base`, we create the following symbolic links: ```bash ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./ ``` , set some environment variables: ```bash export NUM_GPUS=8 export TOKENIZERS_PARALLELISM=0 export MODEL_DIR="./norwegian-roberta-base" mkdir -p ${MODEL_DIR} ``` , and can start training as follows: ```bash python3 -m torch.distributed.launch --nproc_per_node ${NUM_GPUS} run_mlm.py \ --output_dir="${MODEL_DIR}" \ --model_type="roberta" \ --config_name="${MODEL_DIR}" \ --tokenizer_name="${MODEL_DIR}" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_no" \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --gradient_accumulation="4" \ --learning_rate="3e-4" \ --warmup_steps="1000" \ --overwrite_output_dir \ --num_train_epochs="18" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --do_train \ --do_eval \ --logging_steps="500" \ --evaluation_strategy="steps" \ --report_to="tensorboard" \ --save_strategy="no" ```