# 토큰 분류[[token-classification]] [[open-in-colab]] 토큰 분류는 문장의 개별 토큰에 레이블을 할당합니다. 가장 일반적인 토큰 분류 작업 중 하나는 개체명 인식(Named Entity Recognition, NER)입니다. 개체명 인식은 문장에서 사람, 위치 또는 조직과 같은 각 개체의 레이블을 찾으려고 시도합니다. 이 가이드에서 학습할 내용은: 1. [WNUT 17](https://huggingface.co/datasets/wnut_17) 데이터 세트에서 [DistilBERT](https://huggingface.co/distilbert-base-uncased)를 파인 튜닝하여 새로운 개체를 탐지합니다. 2. 추론을 위해 파인 튜닝 모델을 사용합니다. 이 튜토리얼에서 설명하는 작업은 다음 모델 아키텍처에 의해 지원됩니다: [ALBERT](../model_doc/albert), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BioGpt](../model_doc/biogpt), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [ConvBERT](../model_doc/convbert), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [ESM](../model_doc/esm), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [I-BERT](../model_doc/ibert), [LayoutLM](../model_doc/layoutlm), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LiLT](../model_doc/lilt), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [MarkupLM](../model_doc/markuplm), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [QDQBert](../model_doc/qdqbert), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [SqueezeBERT](../model_doc/squeezebert), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso) 시작하기 전에, 필요한 모든 라이브러리가 설치되어 있는지 확인하세요: ```bash pip install transformers datasets evaluate seqeval ``` Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티에 공유하는 것을 권장합니다. 메시지가 표시되면, 토큰을 입력하여 로그인하세요: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## WNUT 17 데이터 세트 가져오기[[load-wnut-17-dataset]] 먼저 🤗 Datasets 라이브러리에서 WNUT 17 데이터 세트를 가져옵니다: ```py >>> from datasets import load_dataset >>> wnut = load_dataset("wnut_17") ``` 다음 예제를 살펴보세요: ```py >>> wnut["train"][0] {'id': '0', 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] } ``` `ner_tags`의 각 숫자는 개체를 나타냅니다. 숫자를 레이블 이름으로 변환하여 개체가 무엇인지 확인합니다: ```py >>> label_list = wnut["train"].features[f"ner_tags"].feature.names >>> label_list [ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ``` 각 `ner_tag`의 앞에 붙은 문자는 개체의 토큰 위치를 나타냅니다: - `B-`는 개체의 시작을 나타냅니다. - `I-`는 토큰이 동일한 개체 내부에 포함되어 있음을 나타냅니다(예를 들어 `State` 토큰은 `Empire State Building`와 같은 개체의 일부입니다). - `0`는 토큰이 어떤 개체에도 해당하지 않음을 나타냅니다. ## 전처리[[preprocess]] 다음으로 `tokens` 필드를 전처리하기 위해 DistilBERT 토크나이저를 가져옵니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` 위의 예제 `tokens` 필드를 보면 입력이 이미 토큰화된 것처럼 보입니다. 그러나 실제로 입력은 아직 토큰화되지 않았으므로 단어를 하위 단어로 토큰화하기 위해 `is_split_into_words=True`를 설정해야 합니다. 예제로 확인합니다: ```py >>> example = wnut["train"][0] >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) >>> tokens ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] ``` 그러나 이로 인해 `[CLS]`과 `[SEP]`라는 특수 토큰이 추가되고, 하위 단어 토큰화로 인해 입력과 레이블 간에 불일치가 발생합니다. 하나의 레이블에 해당하는 단일 단어는 이제 두 개의 하위 단어로 분할될 수 있습니다. 토큰과 레이블을 다음과 같이 재정렬해야 합니다: 1. [`word_ids`](https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.BatchEncoding.word_ids) 메소드로 모든 토큰을 해당 단어에 매핑합니다. 2. 특수 토큰 `[CLS]`와 `[SEP]`에 `-100` 레이블을 할당하여, PyTorch 손실 함수가 해당 토큰을 무시하도록 합니다. 3. 주어진 단어의 첫 번째 토큰에만 레이블을 지정합니다. 같은 단어의 다른 하위 토큰에 `-100`을 할당합니다. 다음은 토큰과 레이블을 재정렬하고 DistilBERT의 최대 입력 길이보다 길지 않도록 시퀀스를 잘라내는 함수를 만드는 방법입니다: ```py >>> def tokenize_and_align_labels(examples): ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) ... labels = [] ... for i, label in enumerate(examples[f"ner_tags"]): ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. ... previous_word_idx = None ... label_ids = [] ... for word_idx in word_ids: # Set the special tokens to -100. ... if word_idx is None: ... label_ids.append(-100) ... elif word_idx != previous_word_idx: # Only label the first token of a given word. ... label_ids.append(label[word_idx]) ... else: ... label_ids.append(-100) ... previous_word_idx = word_idx ... labels.append(label_ids) ... tokenized_inputs["labels"] = labels ... return tokenized_inputs ``` 전체 데이터 세트에 전처리 함수를 적용하려면, 🤗 Datasets [`~datasets.Dataset.map`] 함수를 사용하세요. `batched=True`로 설정하여 데이터 세트의 여러 요소를 한 번에 처리하면 `map` 함수의 속도를 높일 수 있습니다: ```py >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) ``` 이제 [`DataCollatorWithPadding`]를 사용하여 예제 배치를 만들어봅시다. 데이터 세트 전체를 최대 길이로 패딩하는 대신, *동적 패딩*을 사용하여 배치에서 가장 긴 길이에 맞게 문장을 패딩하는 것이 효율적입니다. ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") ``` ## 평가[[evaluation]] 훈련 중 모델의 성능을 평가하기 위해 평가 지표를 포함하는 것이 유용합니다. 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) 라이브러리를 사용하여 빠르게 평가 방법을 가져올 수 있습니다. 이 작업에서는 [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) 평가 지표를 가져옵니다. (평가 지표를 가져오고 계산하는 방법에 대해서는 🤗 Evaluate [빠른 둘러보기](https://huggingface.co/docs/evaluate/a_quick_tour)를 참조하세요). Seqeval은 실제로 정밀도, 재현률, F1 및 정확도와 같은 여러 점수를 산출합니다. ```py >>> import evaluate >>> seqeval = evaluate.load("seqeval") ``` 먼저 NER 레이블을 가져온 다음, [`~evaluate.EvaluationModule.compute`]에 실제 예측과 실제 레이블을 전달하여 점수를 계산하는 함수를 만듭니다: ```py >>> import numpy as np >>> labels = [label_list[i] for i in example[f"ner_tags"]] >>> def compute_metrics(p): ... predictions, labels = p ... predictions = np.argmax(predictions, axis=2) ... true_predictions = [ ... [label_list[p] for (p, l) in zip(prediction, label) if l != -100] ... for prediction, label in zip(predictions, labels) ... ] ... true_labels = [ ... [label_list[l] for (p, l) in zip(prediction, label) if l != -100] ... for prediction, label in zip(predictions, labels) ... ] ... results = seqeval.compute(predictions=true_predictions, references=true_labels) ... return { ... "precision": results["overall_precision"], ... "recall": results["overall_recall"], ... "f1": results["overall_f1"], ... "accuracy": results["overall_accuracy"], ... } ``` 이제 `compute_metrics` 함수를 사용할 준비가 되었으며, 훈련을 설정하면 이 함수로 되돌아올 것입니다. ## 훈련[[train]] 모델을 훈련하기 전에, `id2label`와 `label2id`를 사용하여 예상되는 id와 레이블의 맵을 생성하세요: ```py >>> id2label = { ... 0: "O", ... 1: "B-corporation", ... 2: "I-corporation", ... 3: "B-creative-work", ... 4: "I-creative-work", ... 5: "B-group", ... 6: "I-group", ... 7: "B-location", ... 8: "I-location", ... 9: "B-person", ... 10: "I-person", ... 11: "B-product", ... 12: "I-product", ... } >>> label2id = { ... "O": 0, ... "B-corporation": 1, ... "I-corporation": 2, ... "B-creative-work": 3, ... "I-creative-work": 4, ... "B-group": 5, ... "I-group": 6, ... "B-location": 7, ... "I-location": 8, ... "B-person": 9, ... "I-person": 10, ... "B-product": 11, ... "I-product": 12, ... } ``` [`Trainer`]를 사용하여 모델을 파인 튜닝하는 방법에 익숙하지 않은 경우, [여기](../training#train-with-pytorch-trainer)에서 기본 튜토리얼을 확인하세요! 이제 모델을 훈련시킬 준비가 되었습니다! [`AutoModelForSequenceClassification`]로 DistilBERT를 가져오고 예상되는 레이블 수와 레이블 매핑을 지정하세요: ```py >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer >>> model = AutoModelForTokenClassification.from_pretrained( ... "distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id ... ) ``` 이제 세 단계만 거치면 끝입니다: 1. [`TrainingArguments`]에서 하이퍼파라미터를 정의하세요. `output_dir`는 모델을 저장할 위치를 지정하는 유일한 매개변수입니다. 이 모델을 허브에 업로드하기 위해 `push_to_hub=True`를 설정합니다(모델을 업로드하기 위해 Hugging Face에 로그인해야합니다.) 각 에폭이 끝날 때마다, [`Trainer`]는 seqeval 점수를 평가하고 훈련 체크포인트를 저장합니다. 2. [`Trainer`]에 훈련 인수와 모델, 데이터 세트, 토크나이저, 데이터 콜레이터 및 `compute_metrics` 함수를 전달하세요. 3. [`~Trainer.train`]를 호출하여 모델을 파인 튜닝하세요. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_wnut_model", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=2, ... weight_decay=0.01, ... evaluation_strategy="epoch", ... save_strategy="epoch", ... load_best_model_at_end=True, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_wnut["train"], ... eval_dataset=tokenized_wnut["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` 훈련이 완료되면, [`~transformers.Trainer.push_to_hub`] 메소드를 사용하여 모델을 허브에 공유할 수 있습니다. ```py >>> trainer.push_to_hub() ``` Keras를 사용하여 모델을 파인 튜닝하는 방법에 익숙하지 않은 경우, [여기](../training#train-a-tensorflow-model-with-keras)의 기본 튜토리얼을 확인하세요! TensorFlow에서 모델을 파인 튜닝하려면, 먼저 옵티마이저 함수와 학습률 스케쥴, 그리고 일부 훈련 하이퍼파라미터를 설정해야 합니다: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_train_epochs = 3 >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs >>> optimizer, lr_schedule = create_optimizer( ... init_lr=2e-5, ... num_train_steps=num_train_steps, ... weight_decay_rate=0.01, ... num_warmup_steps=0, ... ) ``` 그런 다음 [`TFAutoModelForSequenceClassification`]을 사용하여 DistilBERT를 가져오고, 예상되는 레이블 수와 레이블 매핑을 지정합니다: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained( ... "distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id ... ) ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]을 사용하여 데이터 세트를 `tf.data.Dataset` 형식으로 변환합니다: ```py >>> tf_train_set = model.prepare_tf_dataset( ... tokenized_wnut["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = model.prepare_tf_dataset( ... tokenized_wnut["validation"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` [`compile`](https://keras.io/api/models/model_training_apis/#compile-method)를 사용하여 훈련할 모델을 구성합니다: ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` 훈련을 시작하기 전에 설정해야할 마지막 두 가지는 예측에서 seqeval 점수를 계산하고, 모델을 허브에 업로드할 방법을 제공하는 것입니다. 모두 [Keras callbacks](../main_classes/keras_callbacks)를 사용하여 수행됩니다. [`~transformers.KerasMetricCallback`]에 `compute_metrics` 함수를 전달하세요: ```py >>> from transformers.keras_callbacks import KerasMetricCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) ``` [`~transformers.PushToHubCallback`]에서 모델과 토크나이저를 업로드할 위치를 지정합니다: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="my_awesome_wnut_model", ... tokenizer=tokenizer, ... ) ``` 그런 다음 콜백을 함께 묶습니다: ```py >>> callbacks = [metric_callback, push_to_hub_callback] ``` 드디어, 모델 훈련을 시작할 준비가 되었습니다! [`fit`](https://keras.io/api/models/model_training_apis/#fit-method)에 훈련 데이터 세트, 검증 데이터 세트, 에폭의 수 및 콜백을 전달하여 파인 튜닝합니다: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks) ``` 훈련이 완료되면, 모델이 자동으로 허브에 업로드되어 누구나 사용할 수 있습니다! 토큰 분류를 위한 모델을 파인 튜닝하는 자세한 예제는 다음 [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) 또는 [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)를 참조하세요. ## 추론[[inference]] 좋아요, 이제 모델을 파인 튜닝했으니 추론에 사용할 수 있습니다! 추론을 수행하고자 하는 텍스트를 가져와봅시다: ```py >>> text = "The Golden State Warriors are an American professional basketball team based in San Francisco." ``` 파인 튜닝된 모델로 추론을 시도하는 가장 간단한 방법은 [`pipeline`]를 사용하는 것입니다. 모델로 NER의 `pipeline`을 인스턴스화하고, 텍스트를 전달해보세요: ```py >>> from transformers import pipeline >>> classifier = pipeline("ner", model="stevhliu/my_awesome_wnut_model") >>> classifier(text) [{'entity': 'B-location', 'score': 0.42658573, 'index': 2, 'word': 'golden', 'start': 4, 'end': 10}, {'entity': 'I-location', 'score': 0.35856336, 'index': 3, 'word': 'state', 'start': 11, 'end': 16}, {'entity': 'B-group', 'score': 0.3064001, 'index': 4, 'word': 'warriors', 'start': 17, 'end': 25}, {'entity': 'B-location', 'score': 0.65523505, 'index': 13, 'word': 'san', 'start': 80, 'end': 83}, {'entity': 'B-location', 'score': 0.4668663, 'index': 14, 'word': 'francisco', 'start': 84, 'end': 93}] ``` 원한다면, `pipeline`의 결과를 수동으로 복제할 수도 있습니다: 텍스트를 토큰화하고 PyTorch 텐서를 반환합니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model") >>> inputs = tokenizer(text, return_tensors="pt") ``` 입력을 모델에 전달하고 `logits`을 반환합니다: ```py >>> from transformers import AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model") >>> with torch.no_grad(): ... logits = model(**inputs).logits ``` 가장 높은 확률을 가진 클래스를 모델의 `id2label` 매핑을 사용하여 텍스트 레이블로 변환합니다: ```py >>> predictions = torch.argmax(logits, dim=2) >>> predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]] >>> predicted_token_class ['O', 'O', 'B-location', 'I-location', 'B-group', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-location', 'B-location', 'O', 'O'] ``` 텍스트를 토큰화하고 TensorFlow 텐서를 반환합니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model") >>> inputs = tokenizer(text, return_tensors="tf") ``` 입력값을 모델에 전달하고 `logits`을 반환합니다: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model") >>> logits = model(**inputs).logits ``` 가장 높은 확률을 가진 클래스를 모델의 `id2label` 매핑을 사용하여 텍스트 레이블로 변환합니다: ```py >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) >>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] >>> predicted_token_class ['O', 'O', 'B-location', 'I-location', 'B-group', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-location', 'B-location', 'O', 'O'] ```