# Trainer API를 사용한 하이퍼파라미터 탐색 [[hyperparameter-search-using-trainer-api]] 🤗 Transformers에서는 🤗 Transformers 모델을 학습시키는데 최적화된 [`Trainer`] 클래스를 제공하기 때문에, 사용자는 직접 훈련 루프를 작성할 필요 없이 더욱 간편하게 학습을 시킬 수 있습니다. 또한, [`Trainer`]는 하이퍼파라미터 탐색을 위한 API를 제공합니다. 이 문서에서 이 API를 활용하는 방법을 예시와 함께 보여드리겠습니다. ## 하이퍼파라미터 탐색 백엔드 [[hyperparameter-search-backend]] [`Trainer`]는 현재 아래 4가지 하이퍼파라미터 탐색 백엔드를 지원합니다: [optuna](https://optuna.org/)와 [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html), [wandb](https://wandb.ai/site/sweeps) 입니다. 하이퍼파라미터 탐색 백엔드로 사용하기 전에 아래의 명령어를 사용하여 라이브러리들을 설치하세요. ```bash pip install optuna/sigopt/wandb/ray[tune] ``` ## 예제에서 하이퍼파라미터 탐색을 활성화하는 방법 [[how-to-enable-hyperparameter-search-in-example]] 하이퍼파라미터 탐색 공간을 정의하세요. 하이퍼파라미터 탐색 백엔드마다 서로 다른 형식이 필요합니다. sigopt의 경우, 해당 [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def sigopt_hp_space(trial): ... return [ ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, ... { ... "categorical_values": ["16", "32", "64", "128"], ... "name": "per_device_train_batch_size", ... "type": "categorical", ... }, ... ] ``` optuna의 경우, 해당 [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def optuna_hp_space(trial): ... return { ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), ... } ``` raytune의 경우, 해당 [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def ray_hp_space(trial): ... return { ... "learning_rate": tune.loguniform(1e-6, 1e-4), ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), ... } ``` wandb의 경우, 해당 [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def wandb_hp_space(trial): ... return { ... "method": "random", ... "metric": {"name": "objective", "goal": "minimize"}, ... "parameters": { ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, ... }, ... } ``` `model_init` 함수를 정의하고 이를 [`Trainer`]에 전달하세요. 아래는 그 예시입니다. ```py >>> def model_init(trial): ... return AutoModelForSequenceClassification.from_pretrained( ... model_args.model_name_or_path, ... from_tf=bool(".ckpt" in model_args.model_name_or_path), ... config=config, ... cache_dir=model_args.cache_dir, ... revision=model_args.model_revision, ... use_auth_token=True if model_args.use_auth_token else None, ... ) ``` 아래와 같이 `model_init` 함수, 훈련 인수, 훈련 및 테스트 데이터셋, 그리고 평가 함수를 사용하여 [`Trainer`]를 생성하세요: ```py >>> trainer = Trainer( ... model=None, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... tokenizer=tokenizer, ... model_init=model_init, ... data_collator=data_collator, ... ) ``` 하이퍼파라미터 탐색을 호출하고, 최적의 시험 매개변수를 가져오세요. 백엔드는 `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"` 중에서 선택할 수 있습니다. 방향은 `"minimize"` 또는 `"maximize"` 중 선택하며, 목표를 최소화할 것인지 최대화할 것인지를 결정합니다. 자신만의 compute_objective 함수를 정의할 수 있습니다. 만약 이 함수를 정의하지 않으면, 기본 compute_objective가 호출되고, f1과 같은 평가 지표의 합이 목푯값으로 반환됩니다. ```py >>> best_trial = trainer.hyperparameter_search( ... direction="maximize", ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` ## DDP 미세 조정을 위한 하이퍼파라미터 탐색 [[hyperparameter-search-for-ddp-finetune]] 현재, DDP(Distributed Data Parallelism; 분산 데이터 병렬처리)를 위한 하이퍼파라미터 탐색은 optuna와 sigopt에서 가능합니다. 최상위 프로세스가 하이퍼파라미터 탐색 과정을 시작하고 그 결과를 다른 프로세스에 전달합니다.