import os from dataclasses import dataclass, field from trainer import Trainer, TrainerArgs from TTS.config import load_config, register_config from TTS.utils.audio import AudioProcessor from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data from TTS.vocoder.models import setup_model @dataclass class TrainVocoderArgs(TrainerArgs): config_path: str = field(default=None, metadata={"help": "Path to the config file."}) def main(): """Run `tts` model training directly by a `config.json` file.""" # init trainer args train_args = TrainVocoderArgs() parser = train_args.init_argparse(arg_prefix="") # override trainer args from comman-line args args, config_overrides = parser.parse_known_args() train_args.parse_args(args) # load config.json and register if args.config_path or args.continue_path: if args.config_path: # init from a file config = load_config(args.config_path) if len(config_overrides) > 0: config.parse_known_args(config_overrides, relaxed_parser=True) elif args.continue_path: # continue from a prev experiment config = load_config(os.path.join(args.continue_path, "config.json")) if len(config_overrides) > 0: config.parse_known_args(config_overrides, relaxed_parser=True) else: # init from console args from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel config_base = BaseTrainingConfig() config_base.parse_known_args(config_overrides) config = register_config(config_base.model)() # load training samples if "feature_path" in config and config.feature_path: # load pre-computed features print(f" > Loading features from: {config.feature_path}") eval_samples, train_samples = load_wav_feat_data(config.data_path, config.feature_path, config.eval_split_size) else: # load data raw wav files eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) # setup audio processor ap = AudioProcessor(**config.audio) # init the model from config model = setup_model(config) # init the trainer and 🚀 trainer = Trainer( train_args, config, config.output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, parse_command_line_args=False, ) trainer.fit() if __name__ == "__main__": main()