import argparse from argparse import RawTextHelpFormatter import torch from tqdm import tqdm from TTS.config import load_config from TTS.tts.datasets import load_tts_samples from TTS.tts.utils.speakers import SpeakerManager def compute_encoder_accuracy(dataset_items, encoder_manager): class_name_key = encoder_manager.encoder_config.class_name_key map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None) class_acc_dict = {} # compute embeddings for all wav_files for item in tqdm(dataset_items): class_name = item[class_name_key] wav_file = item["audio_file"] # extract the embedding embedd = encoder_manager.compute_embedding_from_clip(wav_file) if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None: embedding = torch.FloatTensor(embedd).unsqueeze(0) if encoder_manager.use_cuda: embedding = embedding.cuda() class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item() predicted_label = map_classid_to_classname[str(class_id)] else: predicted_label = None if class_name is not None and predicted_label is not None: is_equal = int(class_name == predicted_label) if class_name not in class_acc_dict: class_acc_dict[class_name] = [is_equal] else: class_acc_dict[class_name].append(is_equal) else: raise RuntimeError("Error: class_name or/and predicted_label are None") acc_avg = 0 for key, values in class_acc_dict.items(): acc = sum(values) / len(values) print("Class", key, "Accuracy:", acc) acc_avg += acc print("Average Accuracy:", acc_avg / len(class_acc_dict)) if __name__ == "__main__": parser = argparse.ArgumentParser( description="""Compute the accuracy of the encoder.\n\n""" """ Example runs: python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json """, formatter_class=RawTextHelpFormatter, ) parser.add_argument("model_path", type=str, help="Path to model checkpoint file.") parser.add_argument( "config_path", type=str, help="Path to model config file.", ) parser.add_argument( "config_dataset_path", type=str, help="Path to dataset config file.", ) parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True) parser.add_argument("--eval", type=bool, help="compute eval.", default=True) args = parser.parse_args() c_dataset = load_config(args.config_dataset_path) meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval) items = meta_data_train + meta_data_eval enc_manager = SpeakerManager( encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda ) compute_encoder_accuracy(items, enc_manager)