Spaces:
Paused
Paused
import json | |
import os | |
from typing import Any, Dict, List, Union | |
import fsspec | |
import numpy as np | |
import torch | |
from coqpit import Coqpit | |
from TTS.config import get_from_config_or_model_args_with_default | |
from TTS.tts.utils.managers import EmbeddingManager | |
class SpeakerManager(EmbeddingManager): | |
"""Manage the speakers for multi-speaker 🐸TTS models. Load a datafile and parse the information | |
in a way that can be queried by speaker or clip. | |
There are 3 different scenarios considered: | |
1. Models using speaker embedding layers. The datafile only maps speaker names to ids used by the embedding layer. | |
2. Models using d-vectors. The datafile includes a dictionary in the following format. | |
:: | |
{ | |
'clip_name.wav':{ | |
'name': 'speakerA', | |
'embedding'[<d_vector_values>] | |
}, | |
... | |
} | |
3. Computing the d-vectors by the speaker encoder. It loads the speaker encoder model and | |
computes the d-vectors for a given clip or speaker. | |
Args: | |
d_vectors_file_path (str, optional): Path to the metafile including x vectors. Defaults to "". | |
speaker_id_file_path (str, optional): Path to the metafile that maps speaker names to ids used by | |
TTS models. Defaults to "". | |
encoder_model_path (str, optional): Path to the speaker encoder model file. Defaults to "". | |
encoder_config_path (str, optional): Path to the spealer encoder config file. Defaults to "". | |
Examples: | |
>>> # load audio processor and speaker encoder | |
>>> ap = AudioProcessor(**config.audio) | |
>>> manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) | |
>>> # load a sample audio and compute embedding | |
>>> waveform = ap.load_wav(sample_wav_path) | |
>>> mel = ap.melspectrogram(waveform) | |
>>> d_vector = manager.compute_embeddings(mel.T) | |
""" | |
def __init__( | |
self, | |
data_items: List[List[Any]] = None, | |
d_vectors_file_path: str = "", | |
speaker_id_file_path: str = "", | |
encoder_model_path: str = "", | |
encoder_config_path: str = "", | |
use_cuda: bool = False, | |
): | |
super().__init__( | |
embedding_file_path=d_vectors_file_path, | |
id_file_path=speaker_id_file_path, | |
encoder_model_path=encoder_model_path, | |
encoder_config_path=encoder_config_path, | |
use_cuda=use_cuda, | |
) | |
if data_items: | |
self.set_ids_from_data(data_items, parse_key="speaker_name") | |
def num_speakers(self): | |
return len(self.name_to_id) | |
def speaker_names(self): | |
return list(self.name_to_id.keys()) | |
def get_speakers(self) -> List: | |
return self.name_to_id | |
def init_from_config(config: "Coqpit", samples: Union[List[List], List[Dict]] = None) -> "SpeakerManager": | |
"""Initialize a speaker manager from config | |
Args: | |
config (Coqpit): Config object. | |
samples (Union[List[List], List[Dict]], optional): List of data samples to parse out the speaker names. | |
Defaults to None. | |
Returns: | |
SpeakerEncoder: Speaker encoder object. | |
""" | |
speaker_manager = None | |
if get_from_config_or_model_args_with_default(config, "use_speaker_embedding", False): | |
if samples: | |
speaker_manager = SpeakerManager(data_items=samples) | |
if get_from_config_or_model_args_with_default(config, "speaker_file", None): | |
speaker_manager = SpeakerManager( | |
speaker_id_file_path=get_from_config_or_model_args_with_default(config, "speaker_file", None) | |
) | |
if get_from_config_or_model_args_with_default(config, "speakers_file", None): | |
speaker_manager = SpeakerManager( | |
speaker_id_file_path=get_from_config_or_model_args_with_default(config, "speakers_file", None) | |
) | |
if get_from_config_or_model_args_with_default(config, "use_d_vector_file", False): | |
speaker_manager = SpeakerManager() | |
if get_from_config_or_model_args_with_default(config, "d_vector_file", None): | |
speaker_manager = SpeakerManager( | |
d_vectors_file_path=get_from_config_or_model_args_with_default(config, "d_vector_file", None) | |
) | |
return speaker_manager | |
def _set_file_path(path): | |
"""Find the speakers.json under the given path or the above it. | |
Intended to band aid the different paths returned in restored and continued training.""" | |
path_restore = os.path.join(os.path.dirname(path), "speakers.json") | |
path_continue = os.path.join(path, "speakers.json") | |
fs = fsspec.get_mapper(path).fs | |
if fs.exists(path_restore): | |
return path_restore | |
if fs.exists(path_continue): | |
return path_continue | |
raise FileNotFoundError(f" [!] `speakers.json` not found in {path}") | |
def load_speaker_mapping(out_path): | |
"""Loads speaker mapping if already present.""" | |
if os.path.splitext(out_path)[1] == ".json": | |
json_file = out_path | |
else: | |
json_file = _set_file_path(out_path) | |
with fsspec.open(json_file, "r") as f: | |
return json.load(f) | |
def save_speaker_mapping(out_path, speaker_mapping): | |
"""Saves speaker mapping if not yet present.""" | |
if out_path is not None: | |
speakers_json_path = _set_file_path(out_path) | |
with fsspec.open(speakers_json_path, "w") as f: | |
json.dump(speaker_mapping, f, indent=4) | |
def get_speaker_manager(c: Coqpit, data: List = None, restore_path: str = None, out_path: str = None) -> SpeakerManager: | |
"""Initiate a `SpeakerManager` instance by the provided config. | |
Args: | |
c (Coqpit): Model configuration. | |
restore_path (str): Path to a previous training folder. | |
data (List): Data samples used in training to infer speakers from. It must be provided if speaker embedding | |
layers is used. Defaults to None. | |
out_path (str, optional): Save the generated speaker IDs to a output path. Defaults to None. | |
Returns: | |
SpeakerManager: initialized and ready to use instance. | |
""" | |
speaker_manager = SpeakerManager() | |
if c.use_speaker_embedding: | |
if data is not None: | |
speaker_manager.set_ids_from_data(data, parse_key="speaker_name") | |
if restore_path: | |
speakers_file = _set_file_path(restore_path) | |
# restoring speaker manager from a previous run. | |
if c.use_d_vector_file: | |
# restore speaker manager with the embedding file | |
if not os.path.exists(speakers_file): | |
print("WARNING: speakers.json was not found in restore_path, trying to use CONFIG.d_vector_file") | |
if not os.path.exists(c.d_vector_file): | |
raise RuntimeError( | |
"You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.d_vector_file" | |
) | |
speaker_manager.load_embeddings_from_file(c.d_vector_file) | |
speaker_manager.load_embeddings_from_file(speakers_file) | |
elif not c.use_d_vector_file: # restor speaker manager with speaker ID file. | |
speaker_ids_from_data = speaker_manager.name_to_id | |
speaker_manager.load_ids_from_file(speakers_file) | |
assert all( | |
speaker in speaker_manager.name_to_id for speaker in speaker_ids_from_data | |
), " [!] You cannot introduce new speakers to a pre-trained model." | |
elif c.use_d_vector_file and c.d_vector_file: | |
# new speaker manager with external speaker embeddings. | |
speaker_manager.load_embeddings_from_file(c.d_vector_file) | |
elif c.use_d_vector_file and not c.d_vector_file: | |
raise "use_d_vector_file is True, so you need pass a external speaker embedding file." | |
elif c.use_speaker_embedding and "speakers_file" in c and c.speakers_file: | |
# new speaker manager with speaker IDs file. | |
speaker_manager.load_ids_from_file(c.speakers_file) | |
if speaker_manager.num_speakers > 0: | |
print( | |
" > Speaker manager is loaded with {} speakers: {}".format( | |
speaker_manager.num_speakers, ", ".join(speaker_manager.name_to_id) | |
) | |
) | |
# save file if path is defined | |
if out_path: | |
out_file_path = os.path.join(out_path, "speakers.json") | |
print(f" > Saving `speakers.json` to {out_file_path}.") | |
if c.use_d_vector_file and c.d_vector_file: | |
speaker_manager.save_embeddings_to_file(out_file_path) | |
else: | |
speaker_manager.save_ids_to_file(out_file_path) | |
return speaker_manager | |
def get_speaker_balancer_weights(items: list): | |
speaker_names = np.array([item["speaker_name"] for item in items]) | |
unique_speaker_names = np.unique(speaker_names).tolist() | |
speaker_ids = [unique_speaker_names.index(l) for l in speaker_names] | |
speaker_count = np.array([len(np.where(speaker_names == l)[0]) for l in unique_speaker_names]) | |
weight_speaker = 1.0 / speaker_count | |
dataset_samples_weight = np.array([weight_speaker[l] for l in speaker_ids]) | |
# normalize | |
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) | |
return torch.from_numpy(dataset_samples_weight).float() | |