Spaces:
Paused
Paused
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import os | |
import pickle | |
import tempfile | |
import unittest | |
from transformers import T5Config, is_torch_available | |
from transformers.models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES | |
from transformers.testing_utils import ( | |
require_sentencepiece, | |
require_tokenizers, | |
require_torch, | |
slow, | |
torch_device, | |
) | |
from transformers.utils import is_torch_fx_available | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_fx_available(): | |
from transformers.utils.fx import symbolic_trace | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
UMT5ForConditionalGeneration, | |
UMT5ForQuestionAnswering, | |
UMT5ForSequenceClassification, | |
UMT5Model, | |
) | |
# Copied from test.models.t5.test_modeling_t5.T5ModelTester with T5->UMT5 | |
class UMT5ModelTester: | |
def __init__( | |
self, | |
parent, | |
vocab_size=99, | |
batch_size=13, | |
encoder_seq_length=7, | |
decoder_seq_length=7, | |
# For common tests | |
is_training=True, | |
use_attention_mask=True, | |
use_labels=False, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
d_ff=37, | |
relative_attention_num_buckets=8, | |
dropout_rate=0.1, | |
initializer_factor=0.002, | |
eos_token_id=1, | |
pad_token_id=0, | |
decoder_start_token_id=0, | |
scope=None, | |
decoder_layers=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.encoder_seq_length = encoder_seq_length | |
self.decoder_seq_length = decoder_seq_length | |
# For common tests | |
self.seq_length = self.decoder_seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.d_ff = d_ff | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.dropout_rate = dropout_rate | |
self.initializer_factor = initializer_factor | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.decoder_start_token_id = decoder_start_token_id | |
self.scope = None | |
self.decoder_layers = decoder_layers | |
def get_large_model_config(self): | |
return T5Config.from_pretrained("google/umt5-base") | |
def prepare_inputs_dict( | |
self, | |
config, | |
input_ids, | |
decoder_input_ids, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
): | |
if attention_mask is None: | |
attention_mask = input_ids.ne(config.pad_token_id) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) | |
if head_mask is None: | |
head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device) | |
if decoder_head_mask is None: | |
decoder_head_mask = torch.ones(config.num_decoder_layers, config.num_attention_heads, device=torch_device) | |
if cross_attn_head_mask is None: | |
cross_attn_head_mask = torch.ones( | |
config.num_decoder_layers, config.num_attention_heads, device=torch_device | |
) | |
return { | |
"input_ids": input_ids, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
} | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) | |
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
# we need to clamp the input ids here to avoid having pad token in between | |
# this is because for NllbMoe the position_ids are prepared such that | |
# all pad tokens have pos id = 2 and rest are between 2..seq_length | |
# and the seq_length here is seq_length - num_pad_tokens | |
# but when using past, there is no way of knowing if the past input ids had | |
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in | |
# position_ids being off by num_pad_tokens in past input | |
input_ids = input_ids.clamp(self.pad_token_id + 2) | |
input_ids[:, -1] = self.eos_token_id # Eos Token | |
decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) | |
config = self.get_config() | |
config.encoder_attention_heads = config.num_attention_heads | |
input_dict = self.prepare_inputs_dict(config, input_ids, decoder_input_ids) | |
return config, input_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def get_pipeline_config(self): | |
return T5Config( | |
vocab_size=166, # t5 forces 100 extra tokens | |
d_model=self.hidden_size, | |
d_ff=self.d_ff, | |
d_kv=self.hidden_size // self.num_attention_heads, | |
num_layers=self.num_hidden_layers, | |
num_decoder_layers=self.decoder_layers, | |
num_heads=self.num_attention_heads, | |
relative_attention_num_buckets=self.relative_attention_num_buckets, | |
dropout_rate=self.dropout_rate, | |
initializer_factor=self.initializer_factor, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.pad_token_id, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.decoder_start_token_id, | |
) | |
def get_config(self): | |
return T5Config( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
d_ff=self.d_ff, | |
d_kv=self.hidden_size // self.num_attention_heads, | |
num_layers=self.num_hidden_layers, | |
num_decoder_layers=self.decoder_layers, | |
num_heads=self.num_attention_heads, | |
relative_attention_num_buckets=self.relative_attention_num_buckets, | |
dropout_rate=self.dropout_rate, | |
initializer_factor=self.initializer_factor, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.pad_token_id, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.decoder_start_token_id, | |
) | |
def create_and_check_model( | |
self, | |
config, | |
input_ids, | |
decoder_input_ids, | |
attention_mask, | |
decoder_attention_mask, | |
lm_labels, | |
): | |
model = UMT5Model(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids=input_ids, | |
decoder_input_ids=decoder_input_ids, | |
attention_mask=attention_mask, | |
decoder_attention_mask=decoder_attention_mask, | |
) | |
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
decoder_output = result.last_hidden_state | |
decoder_past = result.past_key_values | |
encoder_output = result.encoder_last_hidden_state | |
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) | |
self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) | |
# There should be `num_layers` key value embeddings stored in decoder_past | |
self.parent.assertEqual(len(decoder_past), config.num_layers) | |
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple | |
self.parent.assertEqual(len(decoder_past[0]), 4) | |
def create_and_check_decoder_model_past( | |
self, | |
config, | |
input_ids, | |
decoder_input_ids, | |
attention_mask, | |
decoder_attention_mask, | |
lm_labels, | |
): | |
model = UMT5Model(config=config).get_decoder().to(torch_device).eval() | |
# first forward pass | |
outputs = model(input_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids) | |
outputs_no_past = model(input_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_model_fp16_forward( | |
self, | |
config, | |
input_dict, | |
): | |
model = UMT5Model(config=config).to(torch_device).half().eval() | |
output = model(**input_dict)["last_hidden_state"] | |
self.parent.assertFalse(torch.isnan(output).any().item()) | |
def create_and_check_with_sequence_classification_head( | |
self, | |
config, | |
input_dict, | |
): | |
labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device) | |
model = UMT5ForSequenceClassification(config=config).to(torch_device).eval() | |
outputs = model(**input_dict, labels=labels) | |
# self.parent.assertEqual(len(outputs), 4) | |
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels)) | |
self.parent.assertEqual(outputs["loss"].size(), ()) | |
class UMT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(UMT5Model, UMT5ForConditionalGeneration, UMT5ForSequenceClassification, UMT5ForQuestionAnswering) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = (UMT5ForConditionalGeneration,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"conversational": UMT5ForConditionalGeneration, | |
"feature-extraction": UMT5Model, | |
"question-answering": UMT5ForQuestionAnswering, | |
"summarization": UMT5ForConditionalGeneration, | |
"text-classification": UMT5ForSequenceClassification, | |
"text2text-generation": UMT5ForConditionalGeneration, | |
"translation": UMT5ForConditionalGeneration, | |
"zero-shot": UMT5ForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
fx_compatible = False | |
test_pruning = False | |
test_missing_keys = True | |
test_torchscript = True | |
# The small UMT5 model needs higher percentages for CPU/MP tests | |
model_split_percents = [0.8, 0.9] | |
def setUp(self): | |
self.model_tester = UMT5ModelTester(self) | |
# `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file | |
# `src/transformers/data/processors/squad.py` (where this test fails for this model) | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): | |
return True | |
return False | |
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): | |
if not is_torch_fx_available() or not self.fx_compatible: | |
return | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
configs_no_init.return_dict = False | |
for model_class in self.all_model_classes: | |
if model_class.__name__ == "UMT5ForSequenceClassification": | |
continue | |
model = model_class(config=configs_no_init) | |
model.to(torch_device) | |
model.eval() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) | |
try: | |
if model.config.is_encoder_decoder: | |
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward | |
labels = inputs.get("labels", None) | |
input_names = [ | |
"attention_mask", | |
"decoder_attention_mask", | |
"decoder_input_ids", | |
"input_features", | |
"input_ids", | |
"input_values", | |
] | |
if labels is not None: | |
input_names.append("labels") | |
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} | |
input_names = list(filtered_inputs.keys()) | |
model_output = model(**filtered_inputs) | |
traced_model = symbolic_trace(model, input_names) | |
traced_output = traced_model(**filtered_inputs) | |
else: | |
input_names = [ | |
"attention_mask", | |
"bbox", | |
"input_features", | |
"input_ids", | |
"input_values", | |
"pixel_values", | |
"token_type_ids", | |
"visual_feats", | |
"visual_pos", | |
] | |
labels = inputs.get("labels", None) | |
start_positions = inputs.get("start_positions", None) | |
end_positions = inputs.get("end_positions", None) | |
if labels is not None: | |
input_names.append("labels") | |
if start_positions is not None: | |
input_names.append("start_positions") | |
if end_positions is not None: | |
input_names.append("end_positions") | |
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} | |
input_names = list(filtered_inputs.keys()) | |
if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( | |
not hasattr(model.config, "problem_type") or model.config.problem_type is None | |
): | |
model.config.problem_type = "single_label_classification" | |
traced_model = symbolic_trace(model, input_names) | |
traced_output = traced_model(**filtered_inputs) | |
model_output = model(**filtered_inputs) | |
except Exception as e: | |
self.fail(f"Couldn't trace module: {e}") | |
def flatten_output(output): | |
flatten = [] | |
for x in output: | |
if isinstance(x, (tuple, list)): | |
flatten += flatten_output(x) | |
elif not isinstance(x, torch.Tensor): | |
continue | |
else: | |
flatten.append(x) | |
return flatten | |
model_output = flatten_output(model_output) | |
traced_output = flatten_output(traced_output) | |
num_outputs = len(model_output) | |
for i in range(num_outputs): | |
self.assertTrue( | |
torch.allclose(model_output[i], traced_output[i]), | |
f"traced {i}th output doesn't match model {i}th output for {model_class}", | |
) | |
# Test that the model can be serialized and restored properly | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") | |
try: | |
with open(pkl_file_name, "wb") as f: | |
pickle.dump(traced_model, f) | |
with open(pkl_file_name, "rb") as f: | |
loaded = pickle.load(f) | |
except Exception as e: | |
self.fail(f"Couldn't serialize / deserialize the traced model: {e}") | |
loaded_output = loaded(**filtered_inputs) | |
loaded_output = flatten_output(loaded_output) | |
for i in range(num_outputs): | |
self.assertTrue( | |
torch.allclose(model_output[i], loaded_output[i]), | |
f"serialized model {i}th output doesn't match model {i}th output for {model_class}", | |
) | |
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB. | |
# (Even with this call, there are still memory leak by ~0.04MB) | |
self.clear_torch_jit_class_registry() | |
# UMT5ForSequenceClassification does not support inputs_embeds | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in (UMT5Model, UMT5ForConditionalGeneration, UMT5ForQuestionAnswering): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
if not self.is_encoder_decoder: | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
else: | |
encoder_input_ids = inputs["input_ids"] | |
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
del inputs["input_ids"] | |
inputs.pop("decoder_input_ids", None) | |
wte = model.get_input_embeddings() | |
if not self.is_encoder_decoder: | |
inputs["inputs_embeds"] = wte(input_ids) | |
else: | |
inputs["inputs_embeds"] = wte(encoder_input_ids) | |
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def test_with_sequence_classification_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs) | |
def test_export_to_onnx(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
model = UMT5Model(config_and_inputs[0]).to(torch_device) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
torch.onnx.export( | |
model, | |
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), | |
f"{tmpdirname}/t5_test.onnx", | |
export_params=True, | |
opset_version=9, | |
input_names=["input_ids", "decoder_input_ids"], | |
) | |
def test_model_fp16_forward(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) | |
def test_generate_with_head_masking(self): | |
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
config = config_and_inputs[0] | |
model = UMT5ForConditionalGeneration(config).eval() | |
model.to(torch_device) | |
head_masking = { | |
"head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device), | |
"decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), | |
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), | |
} | |
for attn_name, (name, mask) in zip(attention_names, head_masking.items()): | |
head_masks = {name: mask} | |
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified | |
if name == "head_mask": | |
head_masks["decoder_head_mask"] = torch.ones( | |
config.num_decoder_layers, config.num_heads, device=torch_device | |
) | |
out = model.generate( | |
config_and_inputs[1]["input_ids"], | |
num_beams=1, | |
max_length=3, | |
output_attentions=True, | |
return_dict_in_generate=True, | |
**head_masks, | |
) | |
# We check the state of decoder_attentions and cross_attentions just from the last step | |
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] | |
self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) | |
def test_disk_offload(self): | |
pass | |
class Umt5IntegrationTest(unittest.TestCase): | |
def test_small_integration_test(self): | |
""" | |
For comparison run the kaggle notbook available here : https://www.kaggle.com/arthurzucker/umt5-inference | |
""" | |
model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small", return_dict=True).to(torch_device) | |
tokenizer = AutoTokenizer.from_pretrained("google/umt5-small", use_fast=False, legacy=False) | |
input_text = [ | |
"Bonjour monsieur <extra_id_0> bien <extra_id_1>.", | |
"No se como puedo <extra_id_0>.", | |
"This is the reason why we <extra_id_0> them.", | |
"The <extra_id_0> walks in <extra_id_1>, seats", | |
"A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", | |
] | |
input_ids = tokenizer(input_text, return_tensors="pt", padding=True).input_ids | |
# fmt: off | |
EXPECTED_IDS = torch.tensor( | |
[ | |
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], | |
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], | |
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], | |
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], | |
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], | |
] | |
) | |
# fmt: on | |
torch.testing.assert_allclose(input_ids, EXPECTED_IDS) | |
generated_ids = model.generate(input_ids.to(torch_device)) | |
EXPECTED_FILLING = [ | |
"<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] π π π π π π π π π π π <extra_id_56>ajΕ‘ietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajΕ‘ie</s>", | |
"<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", | |
"<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", | |
"<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> νΌν΄[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", | |
"<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", | |
] | |
filling = tokenizer.batch_decode(generated_ids) | |
self.assertEqual(filling, EXPECTED_FILLING) | |