File size: 28,529 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import tempfile
import unittest

from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, T5Tokenizer, T5TokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_seqio, require_tokenizers, slow
from transformers.utils import cached_property, is_tf_available, is_torch_available

from ...test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")

if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"


@require_sentencepiece
@require_tokenizers
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = T5Tokenizer
    rust_tokenizer_class = T5TokenizerFast
    test_rust_tokenizer = True
    test_sentencepiece = True

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "<s>"
        token_id = 1

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "<unk>")
        self.assertEqual(vocab_keys[1], "<s>")
        self.assertEqual(vocab_keys[-1], "<pad>")
        self.assertEqual(len(vocab_keys), 1_101)

    def test_vocab_size(self):
        self.assertEqual(self.get_tokenizer().vocab_size, 1_100)

    def test_full_tokenizer(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])

        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

    @cached_property
    def t5_base_tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

    @cached_property
    def t5_base_tokenizer_fast(self):
        return T5TokenizerFast.from_pretrained("t5-base")

    def get_tokenizer(self, **kwargs) -> T5Tokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs)

    def get_rust_tokenizer(self, **kwargs) -> T5TokenizerFast:
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is falsé."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

    def test_prepare_batch(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id]
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
        self.assertIsInstance(batch, BatchEncoding)

        if FRAMEWORK != "jax":
            result = list(batch.input_ids.numpy()[0])
        else:
            result = list(batch.input_ids.tolist()[0])

        self.assertListEqual(expected_src_tokens, result)

        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)

    def test_empty_target_text(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

    def test_max_length(self):
        tokenizer = self.t5_base_tokenizer
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        targets = tokenizer(
            text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
        )
        self.assertEqual(32, targets["input_ids"].shape[1])

    def test_outputs_not_longer_than_maxlen(self):
        tokenizer = self.t5_base_tokenizer

        batch = tokenizer(
            ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK
        )
        self.assertIsInstance(batch, BatchEncoding)
        # Since T5 does NOT have a max input length,
        # this test should be changed to the following in Transformers v5:
        # self.assertEqual(batch.input_ids.shape, (2, 8001))
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization. </s>"]
        tgt_text = ["Summary of the text. </s>"]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1]
        expected_tgt_tokens = [20698, 13, 8, 1499, 5, 1]

        batch = tokenizer(src_text, text_target=tgt_text)

        self.assertEqual(expected_src_tokens, batch["input_ids"][0])
        self.assertEqual(expected_tgt_tokens, batch["labels"][0])

    def test_token_type_ids(self):
        src_text_1 = ["A first paragraph for summarization."]
        src_text_2 = ["A second paragraph for summarization."]

        fast_token_type_ids = self.t5_base_tokenizer_fast(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids
        slow_token_type_ids = self.t5_base_tokenizer(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids

        self.assertEqual(slow_token_type_ids, fast_token_type_ids)
        self.assertEqual(len(slow_token_type_ids[0]), 18)

    def test_fast_and_slow_same_result(self):
        src_text = "<pad> Today is <unk> nice day </s>"
        tgt_ids = [0, 1960, 19, 2, 1245, 239, 1]
        tgt_text = "<pad> Today is<unk> nice day</s>"

        fast_ids = self.t5_base_tokenizer_fast(src_text, add_special_tokens=False).input_ids
        slow_ids = self.t5_base_tokenizer(src_text, add_special_tokens=False).input_ids
        self.assertEqual(tgt_ids, fast_ids)
        self.assertEqual(tgt_ids, slow_ids)

        fast_text = self.t5_base_tokenizer_fast.decode(fast_ids)
        slow_text = self.t5_base_tokenizer.decode(fast_ids)
        self.assertEqual(tgt_text, fast_text)
        self.assertEqual(tgt_text, slow_text)

    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                added_tokens = [f"<extra_id_{i}>" for i in range(100)] + [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
                )
                tokenizer_p = self.tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )

                p_output = tokenizer_p.encode("Hey this is a <special> token")
                r_output = tokenizer_r.encode("Hey this is a <special> token")
                cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertEqual(p_output, r_output)
                self.assertEqual(cr_output, r_output)
                self.assertTrue(special_token_id in p_output)
                self.assertTrue(special_token_id in r_output)
                self.assertTrue(special_token_id in cr_output)

    def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        if self.test_rust_tokenizer:
            tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file:
                    special_tokens_map = json.load(json_file)

                with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file:
                    tokenizer_config = json.load(json_file)

                added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(100)]

                special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]
                tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
                    json.dump(special_tokens_map, outfile)
                with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
                    json.dump(tokenizer_config, outfile)

                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
                tokenizer_without_change_in_init = tokenizer_class.from_pretrained(
                    tmp_dir,
                )
                self.assertIn(
                    "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
                )
                # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
                self.assertEqual(
                    ["an_additional_special_token"],
                    tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
                    ),
                )

                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)]
                tokenizer = tokenizer_class.from_pretrained(
                    tmp_dir,
                    additional_special_tokens=new_added_tokens,
                )

                self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
                self.assertEqual(
                    ["a_new_additional_special_token"],
                    tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
                    ),
                )

    # overwritten from `test_tokenization_common` since T5 has no max length
    def test_pretrained_model_lists(self):
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)

    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[31220, 7, 41, 14034, 801, 38, 3, 102, 63, 17, 127, 524, 18, 7031, 2032, 277, 11, 3, 102, 63, 17, 127, 524, 18, 2026, 17, 10761, 18, 7041, 61, 795, 879, 18, 19681, 4648, 7, 41, 12920, 382, 6, 350, 6383, 4949, 6, 2158, 12920, 382, 9, 6, 3, 4, 11160, 6, 2043, 17153, 279, 49, 17, 6, 3, 4, 434, 9688, 11439, 21, 6869, 10509, 17725, 41, 567, 9138, 61, 11, 6869, 10509, 11946, 41, 18207, 517, 61, 28, 147, 3538, 1220, 7140, 10761, 2250, 16, 910, 1220, 8024, 11, 1659, 1413, 32, 883, 2020, 344, 2215, 226, 6, 12901, 382, 127, 524, 11, 4738, 7, 127, 15390, 5, 1], [272, 24203, 19, 876, 12, 554, 18, 9719, 1659, 2647, 26352, 6497, 7, 45, 73, 9339, 400, 26, 1499, 57, 22801, 10760, 30, 321, 646, 11, 269, 2625, 16, 66, 7500, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [37, 1704, 4216, 3, 20400, 4418, 7, 147, 8, 19743, 1782, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="t5-base",
            revision="5a7ff2d8f5117c194c7e32ec1ccbf04642cca99b",
        )

    def test_get_sentinel_tokens(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=10)
        sentinel_tokens = tokenizer.get_sentinel_tokens()
        self.assertEqual(len(sentinel_tokens), 10)
        self.assertListEqual(sorted(sentinel_tokens), sorted([f"<extra_id_{str(i)}>" for i in range(0, 10)]))
        self.assertTrue([re.search(r"<extra_id_\d+>", token) is not None for token in sentinel_tokens])

    def test_get_sentinel_token_ids(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=10)
        self.assertListEqual(sorted(tokenizer.get_sentinel_token_ids()), sorted(range(1000, 1010)))

    def test_get_sentinel_tokens_for_fasttokenizer(self):
        tokenizer = T5TokenizerFast(SAMPLE_VOCAB, extra_ids=10)
        sentinel_tokens = tokenizer.get_sentinel_tokens()
        self.assertEqual(len(sentinel_tokens), 10)
        self.assertListEqual(sorted(sentinel_tokens), sorted([f"<extra_id_{str(i)}>" for i in range(0, 10)]))
        self.assertTrue([re.search(r"<extra_id_\d+>", token) is not None for token in sentinel_tokens])

    def test_get_sentinel_token_ids_for_fasttokenizer(self):
        tokenizer = T5TokenizerFast(SAMPLE_VOCAB, extra_ids=10)
        self.assertListEqual(sorted(tokenizer.get_sentinel_token_ids()), sorted(range(1000, 1010)))

    def test_some_edge_cases(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)

        sp_tokens = tokenizer.sp_model.encode("</s>>", out_type=str)
        self.assertEqual(sp_tokens, ["<", "/", "s", ">", ">"])
        tokens = tokenizer.tokenize("</s>>")
        self.assertNotEqual(sp_tokens, tokens)
        self.assertEqual(tokens, ["</s>", ">"])

        tokens = tokenizer.tokenize("")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))

        tokens = tokenizer.tokenize(" ")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str))

        tokens = tokenizer.tokenize("▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str))

        tokens = tokenizer.tokenize(" ▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str))


@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
    """
    A class that regroups important test to make sure that we properly handle the special tokens.
    """

    @classmethod
    def setUpClass(cls):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=1, legacy=False)
        tokenizer._create_trie(tokenizer.all_special_tokens)
        tokenizer.unique_no_split_tokens = ["<extra_id_0>"]
        # TODO @ArthurZ the above is necessary as addedTokens / intialization sucks. Trie is not correctly created
        # So the extra ids are split....
        cls.tokenizer = tokenizer

    def test_add_dummy_prefix(self):
        # make sure `'▁'` is prepended, and outputs match sp_model's
        # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
        input_ids = self.tokenizer.encode(". Hello", add_special_tokens=False)
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode(". Hello")
        self.assertEqual(input_ids, [7] + sp_encode)
        tokens = self.tokenizer.tokenize(". Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

        tokens = self.tokenizer.tokenize("")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))

        tokens = self.tokenizer.tokenize(" ")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str))

        tokens = self.tokenizer.tokenize("▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str))

    def test_remove_extra_whitespaces(self):
        # make sure the extra spaces are eaten
        # sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute
        input_ids = self.tokenizer.encode("       . Hello", add_special_tokens=False)
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode("       . Hello")
        self.assertEqual(input_ids, [7] + sp_encode)
        tokens = self.tokenizer.tokenize(" . Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

        # `'▁'` is also a whitespace
        input_ids = self.tokenizer.encode("▁He is not")
        self.assertEqual(input_ids, [156, 46, 44, 2])
        tokens = self.tokenizer.tokenize("▁He is not")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not"])  # no extra space added

        input_ids = self.tokenizer.encode("▁He is not<extra_id_0>             ▁He")
        # TODO another example of lstrip
        self.assertEqual(input_ids, [156, 46, 44, 1000, 262, 15, 2])

        tokens = self.tokenizer.tokenize("▁He is not<extra_id_0>              ▁He")
        self.assertEqual(
            tokens, ["▁He", "▁is", "▁not", "<extra_id_0>", "H", "e"]
        )  # spaces are eaten by spm + our strip
        # make sure that the output after the extra id is the same as if
        # extra_id was not there
        input_ids = self.tokenizer.encode("▁He is not             ▁He")
        self.assertEqual(input_ids, [156, 46, 44, 156, 2])
        tokens = self.tokenizer.tokenize("▁He is not              ▁He")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"])  # spaces are eaten by spm even if not start

    def test_character_after_special_token(self):
        # Make sure that `tokenizer.tokenize` is similar to
        # adding the equivalent special token to the vocab
        input_ids = self.tokenizer.encode("Hey <extra_id_0>I")
        self.assertEqual(input_ids, [156, 30, 1000, 100, 2])
        tokens = self.tokenizer.tokenize("Hey <extra_id_0>I")
        self.assertEqual(tokens, ["▁He", "y", "<extra_id_0>", "I"])

        input_ids = self.tokenizer.encode("Hello, <extra_id_0>,")
        self.assertEqual(input_ids, [156, 86, 20, 3, 1000, 3, 2])
        tokens = self.tokenizer.tokenize("Hello, <extra_id_0>,")
        self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<extra_id_0>", ","])

    def test_special_tokens_strip(self):
        input_ids = self.tokenizer.encode(" <extra_id_0> ,")
        self.assertEqual(input_ids, [1000, 3, 2])
        tokens = self.tokenizer.tokenize(" <extra_id_0> ,")
        # spaces are eaten by rstrip / lstrip
        self.assertEqual(tokens, ["<extra_id_0>", ","])

        # test with a begin of word like `▁He`
        input_ids = self.tokenizer.encode("No <extra_id_0> He")
        self.assertEqual(input_ids, [284, 1000, 262, 15, 2])
        # spaces are eaten by rstrip / lstrip, so this is expected. Don't strip otherwise you break
        tokens = self.tokenizer.tokenize("No <extra_id_0> He")
        self.assertEqual(tokens, ["▁No", "<extra_id_0>", "H", "e"])

        # Make sure this does not happen if we don't strip
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=0)
        tokenizer.add_special_tokens({"bos_token": AddedToken("<bos>")})
        input_ids = tokenizer.encode("No <bos> He")
        self.assertEqual(input_ids, [284, 1000, 156, 2])
        tokens = tokenizer.tokenize("No <bos> He")
        # the first `' '` after `'No'` is eaten by spm:
        self.assertEqual(tokenizer.sp_model.encode("No         ", out_type=str), ["▁No"])
        self.assertEqual(tokens, ["▁No", "<bos>", "▁He"])

    @require_seqio
    @unittest.skipIf(
        os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
        "RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
    )
    def test_integration_seqio(self):
        from datasets import load_dataset
        from seqio import SentencePieceVocabulary

        ds = load_dataset("xnli", "all_languages", split="train+test+validation")

        # TODO @ArthurZucker fix the 3 commented tests with #23909
        input_texts = [
            "Bonjour <extra_id_0>.",
            # "Bonjour<extra_id_0>.",  # this will fail. In T5 the special token has to be at the end.
            # because in T5 they add `_<extra_id_0>` to the vocab, not `<extra_id_0>`.
            "                   Hey <extra_id_0>I love you",
            # "Hey <extra_id_0> I love you", # this will fail, we strip left, to _I vs I
            # "Hey <extra_id_0>▁He", # this will fail for the same reason, we replace `_` then strip
        ]

        import tqdm

        # Test with umt5
        vocab_path = "gs://t5-data/vocabs/umt5.256000/sentencepiece.model"
        t5x_tokenizer = SentencePieceVocabulary(vocab_path, extra_ids=300)
        hf_tokenizer = T5Tokenizer.from_pretrained("google/umt5-small", legacy=False)
        for text in input_texts:
            self.assertEqual(
                hf_tokenizer.encode(text, add_special_tokens=False), t5x_tokenizer.tokenizer.tokenize(text), f"{text}"
            )
        for texts in tqdm.tqdm(ds["premise"]):
            for text in texts:
                self.assertEqual(
                    hf_tokenizer.encode(text, add_special_tokens=False),
                    t5x_tokenizer.tokenizer.tokenize(text),
                    f"{text}",
                )

        # Test with T5
        hf_tokenizer = T5Tokenizer.from_pretrained("t5-small")
        vocab_path = "gs://t5-data/vocabs/cc_all.32000/sentencepiece.model"
        t5x_tokenizer = SentencePieceVocabulary(vocab_path, extra_ids=300)
        for text in input_texts:
            self.assertEqual(
                hf_tokenizer.encode(text, add_special_tokens=False), t5x_tokenizer.tokenizer.tokenize(text), f"{text}"
            )
        for texts in tqdm.tqdm(ds["premise"]):
            for text in texts:
                self.assertEqual(
                    hf_tokenizer.encode(text, add_special_tokens=False),
                    t5x_tokenizer.tokenizer.tokenize(text),
                    f"{text}",
                )