from huggingface_hub import InferenceClient import gradio as gr from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vector_store = FAISS.load_local("TaoGPT-Embeddings", embeddings) client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) NOMIC = """ TaoGPT - DataMap """ RAG = True def format_prompt(message, history): global RAG if RAG == True: results = vector_store.similarity_search(message ,k=3) context = [result.page_content for result in results] context = "\n\n".join(context) print(context) prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST]Given the following Information:\n{context} \n answer the following question {message} [/INST]" return prompt else: prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: # gr.HTML("

Mistral 7B Instruct

") # gr.HTML("

In this demo, you can chat with Mistral-7B-Instruct model. 💬

") # gr.HTML("

Learn more about the model here. 📚

") gr.HTML("

TaoGPT

") gr.HTML("

TaoGPT is Fine-tuned Mistal-7B model on TaoScience related Information Check out- Github Repo For More Information. 💬

") with gr.Row(): with gr.Column(): gr.HTML("

Chat with TaoGPT

") gr.ChatInterface( generate, additional_inputs=additional_inputs, examples=[["What is TaoScience"], ["Give me a Summary about TaoScience"]] ) RAG_Checkbox = gr.Checkbox(label="Use Retrival Augmented Generation" , value=True , interactive=False) with gr.Column(): gr.HTML("

Look into the Dataset we used to Finetune our Model

") gr.HTML(NOMIC) demo.queue(concurrency_count=75, max_size=100).launch(debug=True)