import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download import os current_directory = os.getcwd() model_directory = os.path.join(current_directory, "models") title = "TaoScience" description = """

LLM Finetuned on TaoScience

TaoGPT is a fine-tuned LLM on Tao Science by Dr. Rulin Xu and Dr. Zhi Gang Sha.
Check out- Github Repo For More Information. 💬

""" NOMIC = """ TaoGPT - DataMap """ model_path = "models" model_name = "taogpt-v1-gguf.Q5_K_M.gguf" if os.path.exists(model_directory) and os.path.isdir(model_directory): print("Models folder already exits") else: hf_hub_download(repo_id="agency888/TaoGPT-v1-GGUF-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") print("Finish the model init process") model.config["promptTemplate"] = """{0} """ model.config["systemPrompt"] = "In the Context of TaoScience answer this questions: " model._is_chat_session_activated = False max_new_tokens = 2048 def generator(message, history, temperature, top_p, top_k): prompt = "" for user_message, assistant_message in history: prompt += model.config["promptTemplate"].format(user_message) prompt += model.config["promptTemplate"].format(message) outputs = [] for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True): outputs.append(token) yield "".join(outputs) def vote(data: gr.LikeData): if data.liked: return else: return chatbot = gr.Chatbot(bubble_full_width=False) additional_inputs=[ gr.Slider( label="temperature", value=0.2, minimum=0.0, maximum=2.0, step=0.05, interactive=True, info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.", ), gr.Slider( label="top_p", value=1.0, minimum=0.0, maximum=1.0, step=0.01, interactive=True, info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it", ), gr.Slider( label="top_k", value=40, minimum=0, maximum=1000, step=1, interactive=True, info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.", ) ] with gr.Blocks() as demo: gr.HTML("

TaoGPTv0

") gr.HTML("

TaoGPTv0 is a fine-tuned Mistal-7B model with a retrieval augmented generation pipeline on Tao Science by Dr. Rulin Xu and Dr. Zhi Gang Sha. Check out- Github Repo For More Information. 💬

") with gr.Column(): with gr.Accordion("Visualise Training Data"): gr.HTML("

Look into the dataset we used to finetune our model

") gr.HTML(NOMIC) with gr.Column(): gr.ChatInterface( fn = generator, title=title, description = description, chatbot=chatbot, additional_inputs=additional_inputs, examples=[ ["What is TaoScience ?"], ["TaoScience was written by ?"], ["Tell me more about TaoScience"]],) RAG_Checkbox = gr.Checkbox(label="Use Retrival Augmented Generation" , value=True , interactive=False) gr.Markdown("The model is prone to Hallucination and many not always be Factual") if __name__ == "__main__": demo.queue(max_size=50).launch(share=True)