import streamlit as st import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras.models import load_model import pickle st.title("Churn Prediction for Telecom Client") # import model and preprocess model = load_model('model.h5') preprocess = pickle.load(open("preprocess.pkl", "rb")) st.write('Please fill your information:') # user input age = st.slider(label='Enter your age:', min_value=0, max_value=150, value=42, step=1) sex = st.radio(label='Enter your gender:', options=['Female', 'Male']) reg = st.radio(label='In which region category do you stay?', options=['Town', 'City', 'Village']) mbr = st.selectbox(label='Which membership that you are on now?', options=['Platinum Membership', 'Premium Membership', 'Gold Membership', 'Silver Membership', 'Basic Membership', 'No Membership']) ten = st.number_input(label='How long you have been using our services (in months)?:', min_value=0, max_value=999, value=42, step=1) ref = st.radio(label='Did you join us through referral?', options=['Yes', 'No']) ofr = st.radio(label='Which offer that you are currently using?', options=['Credit/Debit Card Offers', 'Gift Vouchers/Coupons', 'Without Offers']) med = st.radio(label='What medium of transaction do you usually use?', options=['Smartphone', 'Desktop', 'Both']) itt = st.radio(label='Which internet type that you are currently using?', options=['Wi-Fi', 'Mobile_Data', 'Fiber_Optic']) day = st.number_input(label='How long has it been since your last login?:', min_value=0, max_value=999, value=42, step=1) avt = st.number_input(label='How long do you usually spend on the website (in minutes)?:', min_value=0.00, max_value=9999.99, value=0.00, step=0.01) mch = st.number_input(label='Enter your average monthly charge:', min_value=0.00, max_value=9999999.99, value=0.00, step=0.01) alp = st.number_input(label='Enter your average login period in days:', min_value=0.000000, max_value=999.999999, value=0.000000, step=0.000001) pts = st.number_input(label='Enter your points in wallet:', min_value=0.000000, max_value=99999.999999, value=0.000000, step=0.000001) spc = st.radio(label='Did you use special discount?', options=['Yes', 'No']) ofa = st.radio(label='Do you prefer offers?', options=['Yes', 'No']) com = st.radio(label='Do you have past complaint?', options=['Yes', 'No']) cst = st.selectbox(label='What was your past complaint status?', options=['Solved', 'Solved in Follow-up', 'Unsolved', 'Not Applicable', 'No Information Available']) fdb = st.selectbox(label='What was your past feedback?', options=['Too many ads', 'Poor Product Quality', 'Poor Website', 'Poor Customer Service', 'Products always in Stock', 'Reasonable Price', 'Quality Customer Care', 'User Friendly Website', 'No reason specified']) # convert into dataframe data = pd.DataFrame({'age': [age], 'gender': [sex], 'region_category': [reg], 'membership_category':[mbr], 'tenure': [ten], 'joined_through_referral': [ref], 'preferred_offer_types': [ofr], 'medium_of_operation': [med], 'internet_option': [itt], 'days_since_last_login': [day], 'avg_time_spent': [avt], 'avg_transaction_value': [mch], 'avg_frequency_login_days': [alp], 'points_in_wallet':[pts], 'used_special_discount': [spc], 'offer_application_preference': [ofa], 'past_complaint': [com], 'complaint_status': [cst], 'feedback': [fdb] }) # convert gender to the real values in table if sex == 'Female': sex = 'F' else: sex = 'M' # preprocess the input from user data_final = preprocess.transform(data) # prediction if st.button('Predict'): prediction = model.predict(data_final) prediction = np.where(prediction >= 0.5, 1, 0) confidence = model.evaluate(data_final) if prediction == 0: prediction = 'Congratulations, this person most likely will stay!' else: prediction = 'Churn alert, we need to save this person!' st.write('Prediction result: ') st.write(prediction) st.write(f'Confidence level: {confidence[1]:.2f}%')