import gradio as gr from sentence_transformers import CrossEncoder import torch import requests import ast import os # ------------------------------- # MODELS # ------------------------------- CROSS_ENCODER_RERANK = "cross-encoder/ms-marco-MiniLM-L-12-v2" JINA_MODEL = "jina-reranker-m0" JINA_API_KEY = os.getenv("JINA_API_KEY") # set in HF Space settings JINA_ENDPOINT = "https://api.jina.ai/v1/rerank" NV_MODEL = "NV-RerankQA-Mistral-4B-v3" HF_API_KEY = os.getenv("HF_API_KEY") # set in HF Space settings # ------------------------------- # Load models # ------------------------------- ce_rerank = CrossEncoder(CROSS_ENCODER_RERANK) # ------------------------------- # Pipeline Function # ------------------------------- def evaluate_models(query, docs_str): try: docs = ast.literal_eval(docs_str) assert isinstance(docs, list), "Input must be a Python list of strings" except Exception as e: return {"Error": f"⚠️ Error parsing documents list: {e}"} results = {} # 1. CrossEncoder reranker (MS MARCO) ce_rerank_scores = ce_rerank.predict([(query, d) for d in docs]) ce_rerank_scores = [round(torch.sigmoid(torch.tensor(s)).item(), 4) for s in ce_rerank_scores] results["CrossEncoder (MS MARCO)"] = ce_rerank_scores # 2. Jina Reranker if JINA_API_KEY: headers = {"Authorization": f"Bearer {JINA_API_KEY}", "Content-Type": "application/json"} payload = {"model": JINA_MODEL, "query": query, "documents": docs} try: r = requests.post(JINA_ENDPOINT, headers=headers, json=payload, timeout=30) r.raise_for_status() jina_scores = [0] * len(docs) for res in r.json()["results"]: jina_scores[res["index"]] = round(res["relevance_score"], 4) results["Jina Reranker"] = jina_scores except Exception as e: results["Jina Reranker"] = [f"Error: {e}"] else: results["Jina Reranker"] = ["Error: Missing JINA_API_KEY"] # 3. NV RerankQA Mistral-4B-v3 (HF Inference API) if HF_API_KEY: try: hf_endpoint = f"https://api-inference.huggingface.co/models/{NV_MODEL}" headers = {"Authorization": f"Bearer {HF_API_KEY}"} payload = {"inputs": {"query": query, "documents": docs}} r = requests.post(hf_endpoint, headers=headers, json=payload, timeout=60) r.raise_for_status() nv_scores = [round(res["score"], 4) for res in r.json()] results["NV-RerankQA-Mistral-4B-v3"] = nv_scores except Exception as e: results["NV-RerankQA-Mistral-4B-v3"] = [f"Error: {e}"] else: results["NV-RerankQA-Mistral-4B-v3"] = ["Error: Missing HF_API_KEY"] return results # ------------------------------- # Gradio UI # ------------------------------- with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("## 👑 Ranking Battle (Aligned Scores)\nOutputs only **scores aligned to input docs** from 3 models.") query = gr.Textbox(label="Query", lines=2, placeholder="Enter your search query...") docs = gr.Textbox( label="Documents (Python list)", lines=6, placeholder='Example: [\"Doc one text\", \"Doc two text\", \"Doc three text\"]' ) out = gr.JSON(label="Model Scores") btn = gr.Button("Evaluate 🚀") btn.click(evaluate_models, inputs=[query, docs], outputs=out) demo.launch()