Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,82 +1,100 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from sentence_transformers import CrossEncoder
|
| 3 |
import torch
|
| 4 |
import requests
|
|
|
|
| 5 |
|
| 6 |
# -------------------------------
|
| 7 |
-
#
|
| 8 |
# -------------------------------
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
JINA_MODEL = "jina-reranker-m0"
|
| 11 |
JINA_API_KEY = "jina_4075150fa702471c85ddea0a9ad4b306ouE7ymhrCpvxTxX3mScUv5LLDPKQ"
|
| 12 |
JINA_ENDPOINT = "https://api.jina.ai/v1/rerank"
|
| 13 |
|
| 14 |
# -------------------------------
|
| 15 |
-
# Load
|
| 16 |
# -------------------------------
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
# Hugging Face CrossEncoder Scores
|
| 27 |
-
# -------------------------------
|
| 28 |
-
hf_scores = hf_model.predict([(query, d) for d in docs])
|
| 29 |
-
hf_scores = [torch.sigmoid(torch.tensor(s)).item() for s in hf_scores]
|
| 30 |
-
hf_ranking = sorted(zip(docs, hf_scores), key=lambda x: x[1], reverse=True)
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
-
r = requests.post(JINA_ENDPOINT, headers=headers, json=payload, timeout=
|
| 46 |
r.raise_for_status()
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
jina_ranking = sorted(zip(docs, jina_scores), key=lambda x: x[1], reverse=True)
|
| 50 |
except Exception as e:
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# -------------------------------
|
| 54 |
# Format output
|
| 55 |
# -------------------------------
|
| 56 |
-
out = "
|
| 57 |
-
for
|
| 58 |
-
out += f"
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
for doc, score in jina_ranking:
|
| 62 |
-
out += f"- ({score}) {doc}\n"
|
| 63 |
-
|
| 64 |
return out
|
| 65 |
|
| 66 |
# -------------------------------
|
| 67 |
-
#
|
| 68 |
# -------------------------------
|
| 69 |
-
with gr.Blocks() as demo:
|
| 70 |
-
gr.Markdown("
|
| 71 |
-
|
|
|
|
| 72 |
docs = gr.Textbox(
|
| 73 |
-
label="
|
| 74 |
-
lines=
|
| 75 |
-
placeholder="
|
| 76 |
)
|
| 77 |
-
out = gr.Textbox(label="Ranked Results", lines=
|
| 78 |
|
| 79 |
-
btn = gr.Button("
|
| 80 |
-
btn.click(
|
| 81 |
|
| 82 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
| 3 |
import torch
|
| 4 |
import requests
|
| 5 |
+
import ast
|
| 6 |
|
| 7 |
# -------------------------------
|
| 8 |
+
# MODELS
|
| 9 |
# -------------------------------
|
| 10 |
+
BI_ENCODER = "sentence-transformers/all-MiniLM-L6-v2"
|
| 11 |
+
CROSS_ENCODER_RERANK = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
| 12 |
+
CROSS_ENCODER_STS = "cross-encoder/stsb-roberta-large"
|
| 13 |
+
CROSS_ENCODER_NLI = "cross-encoder/nli-deberta-v3-base"
|
| 14 |
JINA_MODEL = "jina-reranker-m0"
|
| 15 |
JINA_API_KEY = "jina_4075150fa702471c85ddea0a9ad4b306ouE7ymhrCpvxTxX3mScUv5LLDPKQ"
|
| 16 |
JINA_ENDPOINT = "https://api.jina.ai/v1/rerank"
|
| 17 |
|
| 18 |
# -------------------------------
|
| 19 |
+
# Load models
|
| 20 |
# -------------------------------
|
| 21 |
+
bi_encoder = SentenceTransformer(BI_ENCODER)
|
| 22 |
+
ce_rerank = CrossEncoder(CROSS_ENCODER_RERANK)
|
| 23 |
+
ce_sts = CrossEncoder(CROSS_ENCODER_STS)
|
| 24 |
+
ce_nli = CrossEncoder(CROSS_ENCODER_NLI, num_labels=3)
|
| 25 |
|
| 26 |
+
# -------------------------------
|
| 27 |
+
# Pipeline Function
|
| 28 |
+
# -------------------------------
|
| 29 |
+
def evaluate_models(query, docs_str):
|
| 30 |
+
try:
|
| 31 |
+
# Parse docs string as Python list
|
| 32 |
+
docs = ast.literal_eval(docs_str)
|
| 33 |
+
assert isinstance(docs, list), "Input must be a Python list of strings"
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return f"β οΈ Error parsing documents list: {e}"
|
| 36 |
|
| 37 |
+
results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# 1. Bi-encoder cosine similarity
|
| 40 |
+
query_emb = bi_encoder.encode(query, convert_to_tensor=True)
|
| 41 |
+
doc_embs = bi_encoder.encode(docs, convert_to_tensor=True)
|
| 42 |
+
cos_scores = util.cos_sim(query_emb, doc_embs)[0].cpu().tolist()
|
| 43 |
+
results["1. Bi-encoder similarity"] = sorted(zip(docs, cos_scores), key=lambda x: x[1], reverse=True)
|
| 44 |
+
|
| 45 |
+
# 2. CrossEncoder reranker (MS MARCO)
|
| 46 |
+
ce_rerank_scores = ce_rerank.predict([(query, d) for d in docs])
|
| 47 |
+
ce_rerank_scores = [torch.sigmoid(torch.tensor(s)).item() for s in ce_rerank_scores]
|
| 48 |
+
results["2. CrossEncoder Reranker (MS MARCO)"] = sorted(zip(docs, ce_rerank_scores), key=lambda x: x[1], reverse=True)
|
| 49 |
+
|
| 50 |
+
# 3. Jina Reranker
|
| 51 |
+
headers = {"Authorization": f"Bearer {JINA_API_KEY}", "Content-Type": "application/json"}
|
| 52 |
+
payload = {"model": JINA_MODEL, "query": query, "documents": docs}
|
| 53 |
try:
|
| 54 |
+
r = requests.post(JINA_ENDPOINT, headers=headers, json=payload, timeout=30)
|
| 55 |
r.raise_for_status()
|
| 56 |
+
jina_scores = [res["relevance_score"] for res in r.json()["results"]]
|
| 57 |
+
results["3. Jina Reranker"] = sorted(zip(docs, jina_scores), key=lambda x: x[1], reverse=True)
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
+
results["3. Jina Reranker"] = [(f"Error: {e}", 0)]
|
| 60 |
+
|
| 61 |
+
# 4. CrossEncoder STS
|
| 62 |
+
ce_sts_scores = ce_sts.predict([(query, d) for d in docs])
|
| 63 |
+
results["4. CrossEncoder STS"] = sorted(zip(docs, ce_sts_scores), key=lambda x: x[1], reverse=True)
|
| 64 |
+
|
| 65 |
+
# 5. CrossEncoder NLI
|
| 66 |
+
ce_nli_probs = ce_nli.predict([(query, d) for d in docs], apply_softmax=True)
|
| 67 |
+
ce_nli_scores = [float(p[1] + p[2]) for p in ce_nli_probs] # neutral + entailment
|
| 68 |
+
results["5. CrossEncoder NLI"] = sorted(zip(docs, ce_nli_scores), key=lambda x: x[1], reverse=True)
|
| 69 |
+
|
| 70 |
+
# 6. Bi-encoder raw similarity (duplicate for clarity)
|
| 71 |
+
results["6. Bi-encoder baseline"] = sorted(zip(docs, cos_scores), key=lambda x: x[1], reverse=True)
|
| 72 |
|
| 73 |
# -------------------------------
|
| 74 |
# Format output
|
| 75 |
# -------------------------------
|
| 76 |
+
out = ""
|
| 77 |
+
for model_name, ranked in results.items():
|
| 78 |
+
out += f"\n### {model_name}\n"
|
| 79 |
+
for doc, score in ranked:
|
| 80 |
+
out += f"- ({round(score,4)}) {doc}\n"
|
|
|
|
|
|
|
|
|
|
| 81 |
return out
|
| 82 |
|
| 83 |
# -------------------------------
|
| 84 |
+
# Gradio UI
|
| 85 |
# -------------------------------
|
| 86 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 87 |
+
gr.Markdown("## π Multi-Model Reranker (HF + Jina)\nPass a **query** and a **list of documents (Python list of strings)**.")
|
| 88 |
+
|
| 89 |
+
query = gr.Textbox(label="Query", lines=2, placeholder="Enter your search query...")
|
| 90 |
docs = gr.Textbox(
|
| 91 |
+
label="Documents (Python list)",
|
| 92 |
+
lines=6,
|
| 93 |
+
placeholder='Example: ["Doc one text", "Doc two text", "Doc three text"]'
|
| 94 |
)
|
| 95 |
+
out = gr.Textbox(label="Ranked Results", lines=20)
|
| 96 |
|
| 97 |
+
btn = gr.Button("Evaluate π")
|
| 98 |
+
btn.click(evaluate_models, inputs=[query, docs], outputs=out)
|
| 99 |
|
| 100 |
demo.launch()
|