import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import nltk import torch model_name = "afnanmmir/t5-base-abstract-to-plain-language-1" # model_name = "afnanmmir/t5-base-axriv-to-abstract-3" max_input_length = 1024 max_output_length = 256 st.header("Generate summaries") st_model_load = st.text('Loading summary generator model...') # # @st.cache(allow_output_mutation=True) @st.cache_data def load_model(): print("Loading model...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) nltk.download('punkt') print("Model loaded!") tokenizer, model = load_model() st.success('Model loaded!') st_model_load.text("") # with st.sidebar: # st.header("Model parameters") # if 'num_titles' not in st.session_state: # st.session_state.num_titles = 5 # def on_change_num_titles(): # st.session_state.num_titles = num_titles # num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles) # if 'temperature' not in st.session_state: # st.session_state.temperature = 0.7 # def on_change_temperatures(): # st.session_state.temperature = temperature # temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures) # st.markdown("_High temperature means that results are more random_") if 'text' not in st.session_state: st.session_state.text = "" st_text_area = st.text_area('Text to generate the summary for', value=st.session_state.text, height=500) def generate_summary(): st.session_state.text = st_text_area # tokenize text inputs = ["summarize: " + st_text_area] # print(inputs) inputs = tokenizer(inputs, return_tensors="pt", max_length=max_input_length, truncation=True) print("Tokenized inputs: ") # print(inputs) # inputs = tokenizer(inputs, return_tensors="pt") # # compute span boundaries # num_tokens = len(inputs["input_ids"][0]) # print(f"Input has {num_tokens} tokens") # max_input_length = 500 # num_spans = math.ceil(num_tokens / max_input_length) # print(f"Input has {num_spans} spans") # overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1)) # spans_boundaries = [] # start = 0 # for i in range(num_spans): # spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)]) # start -= overlap # print(f"Span boundaries are {spans_boundaries}") # spans_boundaries_selected = [] # j = 0 # for _ in range(num_titles): # spans_boundaries_selected.append(spans_boundaries[j]) # j += 1 # if j == len(spans_boundaries): # j = 0 # print(f"Selected span boundaries are {spans_boundaries_selected}") # # transform input with spans # tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected] # tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected] # inputs = { # "input_ids": torch.stack(tensor_ids), # "attention_mask": torch.stack(tensor_masks) # } # compute predictions # outputs = model.generate(**inputs, do_sample=True, temperature=temperature, max_length=max_output_length) outputs = model.generate(**inputs, do_sample=True, max_length=max_output_length, early_stopping=True, num_beams=8, length_penalty=2.0, no_repeat_ngram_size=2, min_length=64) # print("outputs", outputs) decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] # print("Decoded_outputs", decoded_outputs) predicted_summaries = nltk.sent_tokenize(decoded_outputs.strip()) # print("Predicted summaries", predicted_summaries) # decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) # predicted_summaries = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs] st.session_state.summaries = predicted_summaries # generate title button st_generate_button = st.button('Generate summary', on_click=generate_summary) # title generation labels if 'summaries' not in st.session_state: st.session_state.summaries = [] if len(st.session_state.summaries) > 0: # print("In summaries if") with st.container(): st.subheader("Generated summaries") st.markdown(f"{' '.join(st.session_state.summaries)}")