#!/usr/bin/env python3 from __future__ import annotations import argparse import os import struct import sys from enum import IntEnum from pathlib import Path import numpy as np if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf class GGMLFormat(IntEnum): GGML = 0 GGMF = 1 GGJT = 2 class GGMLFType(IntEnum): ALL_F32 = 0 MOSTLY_F16 = 1 MOSTLY_Q4_0 = 2 MOSTLY_Q4_1 = 3 MOSTLY_Q4_1_SOME_F16 = 4 MOSTLY_Q8_0 = 7 MOSTLY_Q5_0 = 8 MOSTLY_Q5_1 = 9 MOSTLY_Q2_K = 10 MOSTLY_Q3_K_S = 11 MOSTLY_Q3_K_M = 12 MOSTLY_Q3_K_L = 13 MOSTLY_Q4_K_S = 14 MOSTLY_Q4_K_M = 15 MOSTLY_Q5_K_S = 16 MOSTLY_Q5_K_M = 17 MOSTLY_Q6_K = 18 class Hyperparameters: def __init__(self): self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0 self.n_layer = self.n_rot = self.n_ff = 0 self.ftype = GGMLFType.ALL_F32 def set_n_ff(self, model): ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight') assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor' ff_tensor = model.tensors[ff_tensor_idx] self.n_ff = ff_tensor.dims[1] def load(self, data, offset): ( self.n_vocab, self.n_embd, self.n_mult, self.n_head, self.n_layer, self.n_rot, ftype, ) = struct.unpack('<7I', data[offset:offset + (4 * 7)]) try: self.ftype = GGMLFType(ftype) except ValueError: raise ValueError(f'Invalid ftype {ftype}') return 4 * 7 def __str__(self): return f'' class Vocab: def __init__(self, load_scores = True): self.items = [] self.load_scores = load_scores def load(self, data, offset, n_vocab): orig_offset = offset for _ in range(n_vocab): itemlen = struct.unpack('= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}' assert name_len < 4096, 'Absurd tensor name length' quant = gguf.GGML_QUANT_SIZES.get(dtype) assert quant is not None, 'Unknown tensor type' (blksize, tysize) = quant offset += 12 self.dtype= dtype self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)]) offset += 4 * n_dims self.name = bytes(data[offset:offset + name_len]) offset += name_len pad = ((offset + 31) & ~31) - offset if self.use_padding else 0 offset += pad n_elems = np.prod(self.dims) n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize) self.start_offset = offset self.len_bytes = n_bytes offset += n_bytes # print(n_dims, name_len, dtype, self.dims, self.name, pad) return offset - orig_offset class GGMLModel: def __init__(self): self.hyperparameters = None self.vocab = None self.tensor_map = {} self.tensors = [] def validate_header(self, data, offset): magic = bytes(data[offset:offset + 4]) if magic == b'GGUF': raise ValueError('File is already in GGUF format.') if magic == b'lmgg': self.file_format = GGMLFormat.GGML self.format_version = 1 return 4 version = struct.unpack(' 3: raise ValueError(f'Cannot handle unexpected GGJT file version {version}') self.file_format = GGMLFormat.GGJT self.format_version = version return 8 raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.") def validate_conversion(self, ftype): err = '' if (self.file_format < GGMLFormat.GGJT or self.format_version < 2): if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16): err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.' elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2): if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1, GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0): err = 'Q4 and Q8 quantizations changed in GGJTv3.' if len(err) > 0: raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.') def load(self, data, offset): offset += self.validate_header(data, offset) hp = Hyperparameters() offset += hp.load(data, offset) print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}') self.validate_conversion(hp.ftype) vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML) offset += vocab.load(data, offset, hp.n_vocab) tensors: list[Tensor] = [] tensor_map = {} while offset < len(data): tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF) offset += tensor.load(data, offset) tensor_map[tensor.name] = len(tensors) tensors.append(tensor) self.hyperparameters = hp self.vocab = vocab self.tensors = tensors self.tensor_map = tensor_map hp.set_n_ff(self) return offset class GGMLToGGUF: def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None): hp = ggml_model.hyperparameters self.model = ggml_model self.data = data self.cfg = cfg self.params_override = params_override self.vocab_override = vocab_override self.special_vocab = special_vocab if params_override is not None: n_kv_head = params_override.n_head_kv else: if cfg.gqa == 1: n_kv_head = hp.n_head else: gqa = float(cfg.gqa) n_kv_head = None for x in range(1, 256): if float(hp.n_head) / float(x) == gqa: n_kv_head = x assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param" print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}') self.n_kv_head = n_kv_head self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer) def save(self): print('* Preparing to save GGUF file') gguf_writer = gguf.GGUFWriter( self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False) self.add_params(gguf_writer) self.add_vocab(gguf_writer) if self.special_vocab is not None: self.special_vocab.add_to_gguf(gguf_writer) self.add_tensors(gguf_writer) print(" gguf: write header") gguf_writer.write_header_to_file() print(" gguf: write metadata") gguf_writer.write_kv_data_to_file() print(" gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() def add_params(self, gguf_writer): hp = self.model.hyperparameters cfg = self.cfg if cfg.desc is not None: desc = cfg.desc else: desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format' try: # Filenames aren't necessarily valid UTF8. name = cfg.name if cfg.name is not None else cfg.input.name except UnicodeDecodeError: name = None print('* Adding model parameters and KV items') if name is not None: gguf_writer.add_name(name) gguf_writer.add_description(desc) gguf_writer.add_file_type(int(hp.ftype)) if self.params_override is not None: po = self.params_override assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch' assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch' assert po.n_head == hp.n_head, 'Model hyperparams mismatch' gguf_writer.add_context_length (po.n_ctx) gguf_writer.add_embedding_length (po.n_embd) gguf_writer.add_block_count (po.n_layer) gguf_writer.add_feed_forward_length (po.n_ff) gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head) gguf_writer.add_head_count (po.n_head) gguf_writer.add_head_count_kv (po.n_head_kv) gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps) return gguf_writer.add_context_length(cfg.context_length) gguf_writer.add_embedding_length(hp.n_embd) gguf_writer.add_block_count(hp.n_layer) gguf_writer.add_feed_forward_length(hp.n_ff) gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head) gguf_writer.add_head_count(hp.n_head) gguf_writer.add_head_count_kv(self.n_kv_head) gguf_writer.add_layer_norm_rms_eps(float(cfg.eps)) def add_vocab(self, gguf_writer): hp = self.model.hyperparameters gguf_writer.add_tokenizer_model('llama') gguf_writer.add_tokenizer_pre('default') tokens = [] scores = [] toktypes = [] if self.vocab_override is not None: vo = self.vocab_override print('* Adding vocab item(s)') for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()): tokens.append(vbytes) scores.append(score) toktypes.append(ttype) assert len(tokens) == hp.n_vocab, \ f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}' gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) if len(toktypes) > 0: gguf_writer.add_token_types(toktypes) return print(f'* Adding {hp.n_vocab} vocab item(s)') assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab' for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items): tt = 1 # Normal # Special handling for UNK, BOS, EOS tokens. if tokid <= 2: if tokid == 0: vbytes = b'' tt = 2 elif tokid == 1: vbytes = b'' tt = 3 else: vbytes = b'' tt = 3 elif len(vbytes) == 0: tt = 3 # Control elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1: vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8') tt = 6 # Byte else: vbytes = vbytes.replace(b' ', b'\xe2\x96\x81') toktypes.append(tt) tokens.append(vbytes) scores.append(vscore) gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) gguf_writer.add_token_types(toktypes) gguf_writer.add_unk_token_id(0) gguf_writer.add_bos_token_id(1) gguf_writer.add_eos_token_id(2) def add_tensors(self, gguf_writer): tensor_map = self.name_map data = self.data print(f'* Adding {len(self.model.tensors)} tensor(s)') for tensor in self.model.tensors: name = str(tensor.name, 'UTF-8') mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) assert mapped_name is not None, f'Bad name {name}' tempdims = list(tensor.dims[:]) if len(tempdims) > 1: temp = tempdims[1] tempdims[1] = tempdims[0] tempdims[0] = temp # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}') gguf_writer.add_tensor( mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype) def handle_metadata(cfg, hp): import convert assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory' hf_config_path = cfg.model_metadata_dir / "config.json" orig_config_path = cfg.model_metadata_dir / "params.json" # We pass a fake model here. "original" mode will check the shapes of some # tensors if information is missing in the .json file: other than that, the # model data isn't used so this should be safe (at least for now). fakemodel = { 'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor), 'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor), } fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab] fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff] if hf_config_path.exists(): params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path) elif orig_config_path.exists(): params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path) else: raise ValueError('Unable to load metadata') vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir) vocab_factory = convert.VocabFactory(vocab_path) vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir) convert.check_vocab_size(params, vocab) return params, vocab, special_vocab def handle_args(): parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF') parser.add_argument('--input', '-i', type = Path, required = True, help = 'Input GGMLv3 filename') parser.add_argument('--output', '-o', type = Path, required = True, help ='Output GGUF filename') parser.add_argument('--name', help = 'Set model name') parser.add_argument('--desc', help = 'Set model description') parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2') parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096') parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory') parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") parser.add_argument("--vocabtype", default="spm,hfft", help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)") return parser.parse_args() def main(): cfg = handle_args() print(f'* Using config: {cfg}') print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n') if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'): print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".') data = np.memmap(cfg.input, mode = 'r') model = GGMLModel() print('* Scanning GGML input file') offset = model.load(data, 0) # noqa print(f'* GGML model hyperparameters: {model.hyperparameters}') vocab_override = None params_override = None special_vocab = None if cfg.model_metadata_dir is not None: (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters) print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.') print(f'* Overriding params: {params_override}') print(f'* Overriding vocab: {vocab_override}') print(f'* Special vocab: {special_vocab}') else: print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') if model.file_format == GGMLFormat.GGML: print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') converter = GGMLToGGUF( model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab ) converter.save() print(f'* Successful completion. Output saved to: {cfg.output}') if __name__ == '__main__': main()