import streamlit as st import re import torch from transformers import AlbertTokenizer, AlbertModel import pytorch_lightning as pl from huggingface_hub import hf_hub_download def download_torch_model(): model_path = hf_hub_download(repo_id="adrianmoses/hate-speech-detection", filename="pytorch_hs_model.net") print(model_path) return model_path def load_model(): model = AlbertModel.from_pretrained("albert-base-v2") return model def load_tokenizer(): tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2") return tokenizer def clean_tweet(tweet): return re.sub(r'@\w+:?', "", tweet, flags=re.IGNORECASE) def tokenize(tweet): tweet = clean_tweet(tweet) tokenizer = load_tokenizer() return tokenizer(tweet, padding=True, truncation=True, max_length=64, return_tensors='pt') class HateSpeechClassifier(pl.LightningModule): def __init__(self, albert_model, dropout, hidden_dim, output_dim): super().__init__() self.model = albert_model self.l1 = torch.nn.Linear(hidden_dim, hidden_dim) self.dropout = torch.nn.Dropout(dropout) self.l2 = torch.nn.Linear(hidden_dim, output_dim) self.loss = torch.nn.NLLLoss() def forward(self, input_ids, attention_mask, token_type_ids): x = self.model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0] x = x[:, 0] x = self.dropout(torch.relu(self.l1(x))) return torch.log_softmax(self.l2(x), dim=1) def training_step(self, batch, batch_idx): input_ids, attention_masks, token_type_ids, y = batch y_hat = self(input_ids, attention_masks, token_type_ids) loss = self.loss(y_hat, y.view(-1)) return loss def validation_step(self, batch, batch_idx): input_ids, attention_masks, token_type_ids, y = batch y_hat = self(input_ids, attention_masks, token_type_ids) loss = self.loss(y_hat, y.view(-1)) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=1e-5) def setup_model(): torch_model_path = download_torch_model() albert_model = load_model() model = HateSpeechClassifier(albert_model, 0.5, 768, 2) model.load_state_dict(torch.load(torch_model_path, map_location=torch.device('cpu'))) model.eval() return model model = setup_model() st.title("Hate Speech Detection") st.caption("Text will be truncated to 64 tokens") text = st.text_input("Enter text") encoded_input = tokenize(text) device = 'cuda' if torch.cuda.is_available() else 'cpu' input_ids = encoded_input['input_ids'] attention_mask = encoded_input['attention_mask'] token_type_ids = encoded_input['token_type_ids'] pred = model(input_ids, attention_mask, token_type_ids) print(pred) print(pred.data.max(1)) label = pred.data.max(1)[1] print(label) is_hate_speech = "YES" if label == 1 else "NO" st.write(f"Is this hate speech?: {is_hate_speech}")