import streamlit as st import torch from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, MarianMTModel, MarianTokenizer, Wav2Vec2CTCTokenizer import soundfile as sf import tempfile import numpy as np # Load models and tokenizers @st.cache_resource def load_models(): try: # Load Wav2Vec2 for ASR (Multilingual model for Urdu support) # Load the tokenizer directly using Wav2Vec2CTCTokenizer tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-large-xlsr-53") # Then, initialize the processor with the tokenizer asr_processor = Wav2Vec2Processor(feature_extractor=asr_processor.feature_extractor, tokenizer=tokenizer) asr_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53") # Load MarianMT for translation (Urdu to German) translation_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ur-de") translation_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-ur-de") return asr_processor, asr_model, translation_tokenizer, translation_model except Exception as e: st.error(f"Error loading models: {e}") return None, None, None, None # Initialize models asr_processor, asr_model, translation_tokenizer, translation_model = load_models() # ... (rest of your app.py code remains the same) # Streamlit app interface st.title("Real-Time Urdu to German Voice Translator") st.markdown("Upload an Urdu audio file in `.wav` format, and the app will transcribe and translate it.") # File uploader uploaded_file = st.file_uploader("Upload your Urdu audio file (16kHz .wav)", type=["wav"]) if uploaded_file is not None: with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(uploaded_file.read()) temp_file_path = temp_file.name try: # Load and validate audio file audio_input, sample_rate = sf.read(temp_file_path) if sample_rate != 16000: st.error("Audio file must have a sampling rate of 16kHz.") else: st.info("Processing the audio...") # Step 1: Speech-to-Text (ASR) input_values = asr_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values with torch.no_grad(): logits = asr_model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = asr_processor.batch_decode(predicted_ids)[0] st.text(f"Transcribed Urdu Text: {transcription}") # Step 2: Translate Text (Urdu to German) translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True)) german_translation = translation_tokenizer.decode(translated[0], skip_special_tokens=True) st.success(f"Translated German Text: {german_translation}") except Exception as e: st.error(f"An error occurred: {e}")