from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, TextIteratorStreamer from threading import Thread import gradio as gr model = AutoPeftModelForCausalLM.from_pretrained("adlsdztony/Rui-1.5B") tokenizer = AutoTokenizer.from_pretrained("adlsdztony/Rui-3B") # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("adlsdztony/Rui-3B") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer([prompt], return_tensors='pt', padding=True, truncation=True) streamer = TextIteratorStreamer(tokenizer) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() generate_text = '' for new_text in streamer: output = new_text.replace(prompt, '') if output: generate_text += output yield generate_text # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="你是小锐,你只会说中文,你会自称为‘锐’,你的工作是每天告诉同学明天的天气和一些最近发生的事情,最后你会跟同学说晚安", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()