from transformers import pipeline, SamModel, SamProcessor import torch import numpy as np from PIL import Image import requests # Image Segmentation Model sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77") sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77") def show_colored_mask(mask, combined_mask, color): """ Add a single-colored mask to the combined mask. Args: mask (numpy.ndarray): Binary mask to overlay. combined_mask (numpy.ndarray): Combined RGBA mask. color (tuple): RGBA color for the mask. """ if mask.ndim == 3: # If mask has channels then take the first one mask = mask[0] mask = mask.squeeze() # Remove extra dimension mask_binary = (mask > 0).astype(np.uint8) # Ensure the mask is binary # Apply the color to the mask for c in range(3): # RGB channels combined_mask[:, :, c] = np.where(mask_binary > 0, color[c], combined_mask[:, :, c]) combined_mask[:, :, 3] = np.where(mask_binary > 0, color[3], combined_mask[:, :, 3]) # Alpha channel (transperency) def segment_image(input_image, input_points): """ Perform image segmentation and overlay masks with a single solid color. Args: input_image (PIL.Image): The input image. input_points (list): List of points [[x, y], ...]. Returns: PIL.Image: Image with masks applied in one solid red color. """ # Convert input points to a 4D tensor input_points_tensor = torch.tensor(input_points, dtype=torch.float32).unsqueeze(0).unsqueeze(1) # Process input and run the SAM model inputs = sam_processor(input_image, input_points=input_points_tensor, return_tensors="pt") with torch.no_grad(): outputs = sam_model(**inputs) # Post-process masks predicted_masks = sam_processor.image_processor.post_process_masks( outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"] ) # Define a solid red color with full opacity single_color = (255, 0, 0, 100) # Prepare a combined RGBA mask image_size = input_image.size combined_mask = np.zeros((image_size[1], image_size[0], 4), dtype=np.uint8) # Apply all masks using the single color for mask in predicted_masks[0]: mask = mask.numpy() show_colored_mask(mask, combined_mask, single_color) # Combine the mask with the original image input_image_rgba = input_image.convert("RGBA") # Red Green Blue Alpha combined_image = Image.alpha_composite(input_image_rgba, Image.fromarray(combined_mask, "RGBA")) return combined_image