import torch from transformers import (T5ForConditionalGeneration,T5Tokenizer) import gradio as gr best_model_path = "aditi2222/t5-paraphrase" model = T5ForConditionalGeneration.from_pretrained(best_model_path) tokenizer = T5Tokenizer.from_pretrained("aditi2222/t5-paraphrase") def tokenize_data(text): # Tokenize the review body input_ = "paraphrase: "+ str(text) + ' ' max_len = 64 # tokenize inputs tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') inputs={"input_ids": tokenized_inputs['input_ids'], "attention_mask": tokenized_inputs['attention_mask']} return inputs def generate_answers(text): inputs = tokenize_data(text) results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, max_length=64, top_k=120, top_p=0.98, early_stopping=True, num_return_sequences=1) answer = tokenizer.decode(results[0], skip_special_tokens=True) return answer #iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"]) #iface.launch(inline=False, share=True) iface = gr.Interface(fn=generate_answers, inputs=[gr.inputs.Textbox(lines=30)],outputs=["text"]) #iface = gr.Interface(fn=generate_answers, inputs=[gr.inputs.Textbox(lines=30)],outputs=#[gr.outputs.Textbox(lines=15)]) iface.launch(inline=False, share=True)