# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate images using pretrained network pickle.""" import os import re from typing import List, Optional import numpy as np import torch from torch_utils import misc from torch_utils import persistence from torch_utils.ops import conv2d_resample from torch_utils.ops import upfirdn2d from torch_utils.ops import bias_act from torch_utils.ops import fma from copy import deepcopy import click import PIL.Image from torch import linalg as LA import torch.nn.functional as F def block_forward(self, x, img, ws, shapes, force_fp32=True, fused_modconv=None, **layer_kwargs): misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) w_iter = iter(ws.unbind(dim=1)) dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: with misc.suppress_tracer_warnings(): # this value will be treated as a constant fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) # Input. if self.in_channels == 0: x = self.const.to(dtype=dtype, memory_format=memory_format) x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) else: misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y.add_(x) else: x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) # ToRGB. if img is not None: misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) if self.is_last or self.architecture == 'skip': y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img.add_(y) if img is not None else y assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img def block_forward_from_style(self, x, img, ws, shapes, force_fp32=True, fused_modconv=None, **layer_kwargs): misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) w_iter = iter(ws.unbind(dim=1)) dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: with misc.suppress_tracer_warnings(): # this value will be treated as a constant fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) # Input. if self.in_channels == 0: x = self.const.to(dtype=dtype, memory_format=memory_format) x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) else: misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y.add_(x) else: x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) # ToRGB. if img is not None: misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) if self.is_last or self.architecture == 'skip': y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img.add_(y) if img is not None else y assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img def unravel_index(index, shape): out = [] for dim in reversed(shape): out.append(index % dim) index = index // dim return tuple(reversed(out)) def w_to_s( GIn, wsIn:np.ndarray, outdir: str ="s_out", truncation_psi: float = 0.7, noise_mode: str = "const", ): G=deepcopy(GIn) # Use GPU if available if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") os.makedirs(outdir, exist_ok=True) # Generate images. for i in G.parameters(): i.requires_grad = True # ws = np.load(projected_w)['w'] ws = torch.tensor(wsIn, device=device) block_ws = [] with torch.autograd.profiler.record_function('split_ws'): misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim]) ws = ws.to(torch.float32) w_idx = 0 for res in G.synthesis.block_resolutions: block = getattr(G.synthesis, f'b{res}') block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) w_idx += block.num_conv styles = torch.zeros(1,26,512, device=device) styles_idx = 0 temp_shapes = [] for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws): block = getattr(G.synthesis, f'b{res}') if res == 4: temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:]) styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:]) block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() styles_idx += 2 else: temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:]) styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:]) styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:]) block.conv0.affine = torch.nn.Identity() block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() styles_idx += 3 temp_shapes.append(temp_shape) styles = styles.detach() np.savez(f'{outdir}/input.npz', s=styles.cpu().numpy()) return styles.cpu().numpy() def generate_from_style( GIn, styles: np.ndarray, styles_direction: np.ndarray, outdir: str, change_power: int, truncation_psi: float = 0.7, noise_mode: str = "const", ): G=deepcopy(GIn) # Use GPU if available if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") os.makedirs(outdir, exist_ok=True) # Generate images for i in G.parameters(): i.requires_grad = False temp_shapes = [] for res in G.synthesis.block_resolutions: block = getattr(G.synthesis, f'b{res}') if res == 4: temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() else: temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) block.conv0.affine = torch.nn.Identity() block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() temp_shapes.append(temp_shape) styles_direction = torch.tensor(styles_direction, device=device) styles = torch.tensor(styles, device=device) with torch.no_grad(): imgs = [] grad_changes = [change_power] for grad_change in grad_changes: styles += styles_direction*grad_change styles_idx = 0 x = img = None for k , res in enumerate(G.synthesis.block_resolutions): block = getattr(G.synthesis, f'b{res}') if res == 4: x, img = block_forward_from_style(block, x, img, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 2 else: x, img = block_forward_from_style(block, x, img, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 3 img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) imgs.append(img[0].to(torch.uint8).cpu().numpy()) styles -= styles_direction*grad_change output_image = PIL.Image.fromarray(np.concatenate(imgs, axis=1), 'RGB') output_image.save(os.path.join(outdir, 'final_out.png'), quality=95) return output_image