# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate images using pretrained network pickle.""" import math import legacy import clip import dnnlib import numpy as np import torch import torch.nn.functional as F from torchvision.transforms import Compose, Resize, CenterCrop from PIL import Image from torch_utils import misc from torch_utils.ops import upfirdn2d import id_loss from copy import deepcopy def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs): misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) w_iter = iter(ws.unbind(dim=1)) dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: with misc.suppress_tracer_warnings(): # this value will be treated as a constant fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) # Input. if self.in_channels == 0: x = self.const.to(dtype=dtype, memory_format=memory_format) x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) else: misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y.add_(x) else: x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) # ToRGB. if img is not None: misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) if self.is_last or self.architecture == 'skip': y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img.add_(y) if img is not None else y assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img def unravel_index(index, shape): out = [] for dim in reversed(shape): out.append(index % dim) index = index // dim return tuple(reversed(out)) def find_direction( GIn, text_prompt: str, truncation_psi: float = 0.7, noise_mode: str = "const", resolution: int = 256, identity_power: float = 0.5, ): G = deepcopy(GIn) seeds=np.random.randint(0, 1000, 128) batch_size=1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Labels class_idx=None label = torch.zeros([1, G.c_dim], device=device).requires_grad_() if G.c_dim != 0: label[:, class_idx] = 1 model, preprocess = clip.load("ViT-B/32", device=device) text = clip.tokenize([text_prompt]).to(device) text_features = model.encode_text(text) # Generate images for i in G.parameters(): i.requires_grad = True mean = torch.as_tensor((0.48145466, 0.4578275, 0.40821073), dtype=torch.float, device=device) std = torch.as_tensor((0.26862954, 0.26130258, 0.27577711), dtype=torch.float, device=device) if mean.ndim == 1: mean = mean.view(-1, 1, 1) if std.ndim == 1: std = std.view(-1, 1, 1) transf = Compose([Resize(224, interpolation=Image.BICUBIC), CenterCrop(224)]) styles_array = [] for seed_idx, seed in enumerate(seeds): if seed == seeds[-1]: print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) ws = G.mapping(z, label, truncation_psi=truncation_psi) block_ws = [] with torch.autograd.profiler.record_function('split_ws'): misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim]) ws = ws.to(torch.float32) w_idx = 0 for res in G.synthesis.block_resolutions: block = getattr(G.synthesis, f'b{res}') block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) w_idx += block.num_conv styles = torch.zeros(1, 26, 512, device=device) styles_idx = 0 temp_shapes = [] for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws): block = getattr(G.synthesis, f'b{res}') if res == 4: temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) styles[0, :1, :] = block.conv1.affine(cur_ws[0, :1, :]) styles[0, 1:2, :] = block.torgb.affine(cur_ws[0, 1:2, :]) if seed_idx == (len(seeds) - 1): block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() styles_idx += 2 else: temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:]) styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:]) styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:]) if seed_idx == (len(seeds) - 1): block.conv0.affine = torch.nn.Identity() block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() styles_idx += 3 temp_shapes.append(temp_shape) styles = styles.detach() styles_array.append(styles) resolution_dict = {256: 6, 512: 7, 1024: 8} id_coeff = identity_power styles_direction = torch.zeros(1, 26, 512, device=device) styles_direction_grad_el2 = torch.zeros(1, 26, 512, device=device) styles_direction.requires_grad_() global id_loss2 #id_loss = id_loss.IDLoss("a").to(device).eval() id_loss2 = id_loss.IDLoss("a").to(device).eval() temp_photos = [] grads = [] for i in range(math.ceil(len(seeds) / batch_size)): styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device) seed = seeds[i] styles_idx = 0 x2 = img2 = None for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): block = getattr(G.synthesis, f'b{res}') if k > resolution_dict[resolution]: continue if res == 4: x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 2 else: x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 3 img2_cpu = img2.detach().cpu().numpy() temp_photos.append(img2_cpu) if i > 3: continue styles2 = styles + styles_direction styles_idx = 0 x = img = None for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): block = getattr(G.synthesis, f'b{res}') if k > resolution_dict[resolution]: continue if res == 4: x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 2 else: x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 3 identity_loss, _ = id_loss2(img, img2) identity_loss *= id_coeff img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std) image_features = model.encode_image(img) cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0)) (identity_loss + cos_sim.sum()).backward(retain_graph=True) styles_direction.grad[:, list(range(26)), :] = 0 with torch.no_grad(): styles_direction *= 0 for i in range(math.ceil(len(seeds) / batch_size)): seed = seeds[i] styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device) img2 = torch.tensor(temp_photos[i]).to(device) styles2 = styles + styles_direction styles_idx = 0 x = img = None for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): block = getattr(G.synthesis, f'b{res}') if k > resolution_dict[resolution]: continue if res == 4: x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 2 else: x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) styles_idx += 3 identity_loss, _ = id_loss2(img, img2) identity_loss *= id_coeff img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std) image_features = model.encode_image(img) cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0)) (identity_loss + cos_sim.sum()).backward(retain_graph=True) styles_direction.grad[:, [0, 1, 4, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], :] = 0 if i % 2 == 1: styles_direction.data = (styles_direction - styles_direction.grad * 5) grads.append(styles_direction.grad.clone()) styles_direction.grad.data.zero_() if i > 3: styles_direction_grad_el2[grads[-2] * grads[-1] < 0] += 1 styles_direction = styles_direction.detach() styles_direction[styles_direction_grad_el2 > (len(seeds) / batch_size) / 4] = 0 return styles_direction.cpu().numpy()