# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate images using pretrained network pickle.""" import os import re import random import math import time import click import legacy from typing import List, Optional import cv2 import clip import dnnlib import numpy as np import torchvision from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize import torch from torch import linalg as LA import torch.nn.functional as F from PIL import Image import matplotlib.pyplot as plt from torch_utils import misc from torch_utils import persistence from torch_utils.ops import conv2d_resample from torch_utils.ops import upfirdn2d from torch_utils.ops import bias_act from torch_utils.ops import fma def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs): misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) w_iter = iter(ws.unbind(dim=1)) dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: with misc.suppress_tracer_warnings(): # this value will be treated as a constant fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) # Input. if self.in_channels == 0: x = self.const.to(dtype=dtype, memory_format=memory_format) x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) else: misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y.add_(x) else: x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) # ToRGB. if img is not None: misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) if self.is_last or self.architecture == 'skip': y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img.add_(y) if img is not None else y assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img def unravel_index(index, shape): out = [] for dim in reversed(shape): out.append(index % dim) index = index // dim return tuple(reversed(out)) def num_range(s: str) -> List[int]: '''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' range_re = re.compile(r'^(\d+)-(\d+)$') m = range_re.match(s) if m: return list(range(int(m.group(1)), int(m.group(2))+1)) vals = s.split(',') return [int(x) for x in vals] @click.command() @click.pass_context @click.option('--network', 'network_pkl', help='Network pickle filename', required=True) @click.option('--seeds', type=num_range, help='List of random seeds') @click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True) @click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True) @click.option('--projected-w', help='Projection result file', type=str, metavar='FILE') @click.option('--projected_s', help='Projection result file', type=str, metavar='FILE') @click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR') def generate_images( ctx: click.Context, network_pkl: str, seeds: Optional[List[int]], truncation_psi: float, noise_mode: str, outdir: str, class_idx: Optional[int], projected_w: Optional[str], projected_s: Optional[str] ): print('Loading networks from "%s"...' % network_pkl) # Use GPU if available if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") with dnnlib.util.open_url(network_pkl) as f: G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore os.makedirs(outdir, exist_ok=True) # Generate images. for i in G.parameters(): i.requires_grad = True ws = np.load(projected_w)['w'] ws = torch.tensor(ws, device=device) block_ws = [] with torch.autograd.profiler.record_function('split_ws'): misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim]) ws = ws.to(torch.float32) w_idx = 0 for res in G.synthesis.block_resolutions: block = getattr(G.synthesis, f'b{res}') block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) w_idx += block.num_conv styles = torch.zeros(1,26,512, device=device) styles_idx = 0 temp_shapes = [] for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws): block = getattr(G.synthesis, f'b{res}') if res == 4: temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:]) styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:]) block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() styles_idx += 2 else: temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:]) styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:]) styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:]) block.conv0.affine = torch.nn.Identity() block.conv1.affine = torch.nn.Identity() block.torgb.affine = torch.nn.Identity() styles_idx += 3 temp_shapes.append(temp_shape) styles = styles.detach() np.savez(f'{outdir}/input.npz', s=styles.cpu().numpy()) if __name__ == "__main__": generate_images()