import torch import torch.nn as nn from criteria.lpips.networks import get_network, LinLayers from criteria.lpips.utils import get_state_dict class LPIPS(nn.Module): r"""Creates a criterion that measures Learned Perceptual Image Patch Similarity (LPIPS). Arguments: net_type (str): the network type to compare the features: 'alex' | 'squeeze' | 'vgg'. Default: 'alex'. version (str): the version of LPIPS. Default: 0.1. """ def __init__(self, net_type: str = 'alex', version: str = '0.1'): assert version in ['0.1'], 'v0.1 is only supported now' super(LPIPS, self).__init__() # pretrained network self.net = get_network(net_type).to("cuda") # linear layers self.lin = LinLayers(self.net.n_channels_list).to("cuda") self.lin.load_state_dict(get_state_dict(net_type, version)) def forward(self, x: torch.Tensor, y: torch.Tensor): feat_x, feat_y = self.net(x), self.net(y) diff = [(fx - fy) ** 2 for fx, fy in zip(feat_x, feat_y)] res = [l(d).mean((2, 3), True) for d, l in zip(diff, self.lin)] return torch.sum(torch.cat(res, 0)) / x.shape[0]