import os import torch import gradio as gr from PIL import Image import matplotlib.pyplot as plt from diffusers import DiffusionPipeline from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation from share_btn import community_icon_html, loading_icon_html, share_js processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") pipe = DiffusionPipeline.from_pretrained( "Fantasy-Studio/Paint-by-Example", torch_dtype=torch.float16, ) pipe = pipe.to("cuda") def process_image(image, prompt): inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt") # predict with torch.no_grad(): outputs = model(**inputs) preds = outputs.logits filename = f"mask.png" plt.imsave(filename, torch.sigmoid(preds)) return Image.open("mask.png").convert("RGB") def read_content(file_path): with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, reference, scale, seed, step): width, height = dict["image"].size if width < height: factor = width / 512.0 width = 512 height = int((height / factor) / 8.0) * 8 else: factor = height / 512.0 height = 512 width = int((width / factor) / 8.0) * 8 init_image = dict["image"].convert("RGB").resize((width, height)) mask = dict["mask"].convert("RGB").resize((width, height)) generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None output = pipe( image=init_image, mask_image=mask, example_image=reference, generator=generator, guidance_scale=scale, num_inference_steps=step, ).images[0] return output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' example = {} ref_dir = 'examples/reference' image_dir = 'examples/image' ref_list = [os.path.join(ref_dir, file) for file in os.listdir(ref_dir)] ref_list.sort() image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir)] image_list.sort() image_blocks = gr.Blocks(css=css) with image_blocks as demo: gr.HTML(read_content("header.html")) with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Source Image") reference = gr.Image(source='upload', elem_id="image_upload", type="pil", label="Reference Image") with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img").style(height=400) guidance = gr.Slider(label="Guidance scale", value=5, maximum=15,interactive=True) steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1,interactive=True) seed = gr.Slider(0, 10000, label='Seed (0 = random)', value=0, step=1) with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): btn = gr.Button("Paint!").style( margin=False, rounded=(False, True, True, False), full_width=True, ) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=True) loading_icon = gr.HTML(loading_icon_html, visible=True) share_button = gr.Button("Share to community", elem_id="share-btn", visible=True) with gr.Row(): with gr.Column(): gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12) with gr.Column(): gr.Examples(ref_list, inputs=[reference],label="Examples - Reference Image",examples_per_page=12) btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button]) share_button.click(None, [], [], _js=share_js) gr.HTML( """