import os import torch import gradio as gr from PIL import Image import matplotlib.pyplot as plt from diffusers import DiffusionPipeline from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation from share_btn import community_icon_html, loading_icon_html, share_js processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") pipe = DiffusionPipeline.from_pretrained( "Fantasy-Studio/Paint-by-Example", torch_dtype=torch.float16, ) pipe = pipe.to("cuda") def process_image(image, prompt): inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt") # predict with torch.no_grad(): outputs = model(**inputs) preds = outputs.logits filename = f"mask.png" plt.imsave(filename, torch.sigmoid(preds)) return Image.open("mask.png").convert("RGB") def read_content(file_path): with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, reference, scale, seed, step): width, height = dict["image"].size if width < height: factor = width / 512.0 width = 512 height = int((height / factor) / 8.0) * 8 else: factor = height / 512.0 height = 512 width = int((width / factor) / 8.0) * 8 init_image = dict["image"].convert("RGB").resize((width, height)) mask = dict["mask"].convert("RGB").resize((width, height)) generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None output = pipe( image=init_image, mask_image=mask, example_image=reference, generator=generator, guidance_scale=scale, num_inference_steps=step, ).images[0] return output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' example = {} ref_dir = 'examples/reference' image_dir = 'examples/image' ref_list = [os.path.join(ref_dir, file) for file in os.listdir(ref_dir)] ref_list.sort() image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir)] image_list.sort() image_blocks = gr.Blocks(css=css) with image_blocks as demo: gr.HTML(read_content("header.html")) with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Source Image") reference = gr.Image(source='upload', elem_id="image_upload", type="pil", label="Reference Image") with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img").style(height=400) guidance = gr.Slider(label="Guidance scale", value=5, maximum=15,interactive=True) steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1,interactive=True) seed = gr.Slider(0, 10000, label='Seed (0 = random)', value=0, step=1) with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): btn = gr.Button("Paint!").style( margin=False, rounded=(False, True, True, False), full_width=True, ) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=True) loading_icon = gr.HTML(loading_icon_html, visible=True) share_button = gr.Button("Share to community", elem_id="share-btn", visible=True) with gr.Row(): with gr.Column(): gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12) with gr.Column(): gr.Examples(ref_list, inputs=[reference],label="Examples - Reference Image",examples_per_page=12) btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button]) share_button.click(None, [], [], _js=share_js) gr.HTML( """

LICENSE

The model is licensed with a CreativeML Open RAIL-M license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license

""" ) image_blocks.launch()