
Document-Level Event Argument Extraction by Conditional Generation:
Appendix

Sha Li and Heng Ji and Jiawei Han
University of Illinois at Urbana-Champaign, IL, USA

{shal2, hengji, hanj}@illinois.edu

1 Trigger Extraction Model Details

1.1 Tagging Scheme

We use the IO tagging scheme, where I stands for
“inside a span" and O stands for “outside any span".
This simplified tagging scheme was selected to
reduce parameters without much loss of modeling
power since (1) triggers are often single words and
I tags in the BIO (B stands for “beginning of a
span") scheme are infrequent and (2) we rarely see
two consecutive event triggers of the same type.

1.2 Class Vectors

For each of the event types, we provided 3 key-
words as initial seeds. If the event type can be
triggered by nominals, we additionally add key-
words for the nominal form. Our chosen keywords
will be provided along with the ontology file as
supplementary materials.

For each event type, we search for its correspond-
ing keywords’ occurrence in the Gigaword corpus.
To filter out ambiguous usages of the keywords, we
apply BERT-large as a masked language model and
predict words that can replace the current mention
of the keyword. If another keyword for this event
type appears among the top 50 candidates, we ac-
cept this example. The vector representation for
this example is the average of the wordpiece tokens
that consist the keyword.

The class vector is an average over all the exam-
ples for the event type.

2 Solving for M

The following section is a simplified version of the
derivation from TapNet (Yoon et al., 2019).

In order to correctly classify ck, we would like
to maximize the dot product with φk and minimize
the dot product with φl 6=k in the subspace defined
by M . A possible solution would be to find the

projection matrix M so that:

M(ck) = λM(φk −
1

m− 1

∑
l6=k

φl)

s.t.‖φi‖ = 1, φT
i φj 6=i = 0.

(1)

This implies that

M(ck)
TM(φk) = λ‖M‖2

M(ck)
TM(φl) = −λ

1

m− 1
‖M‖2

(2)

which is a reasonably good separation between the
classes.

Let φ̂k = φk −
∑

l 6=k φl, then we can rearrange
the previous equation as:

MT (ck − λφ̂k) = 0 (3)

Note that this holds for every k. If we define D ∈
Rd×n as the matrix with ck−λφ̂k as its kth column,
we have MTD = ~0, implying that the columns in
M are in the null space of DT . This null space of
DT can be obtained by QR decomposition.

DT = QR = [Q1, Q2]

[
R1

0

]
(4)

Although the rank of D is unknown, it will not be
larger than n (and with high probability close to n),
and thus we can take m columns starting from the
n+ 1 column of Q for M ∈ Rd×m.

In order to account for the new types, we apply
some leniency at training time and learn n′ > n
reference vectors instead of only n vectors for the
n classes that appear in the training set. Then when
we are asked to identify new types during inference,
we update M based on the new class vectors c′n.

The complete algorithm is listed in Algorithm 1.

2.1 Pseudo Labeling
In the pseudo-labeling process, we compute the
token-wise cosine similarity between class vec-
tors and averaged sentence-piece embeddings from

Algorithm 1: Event trigger extraction.
Training;
Input: Label names of n event types. Training

examples {x, y}.
Compute class vectors c1, · · · , cn;
Initialize φ1, · · · , φn′ ;
for training episode do

Compute D;
Compute M by decomposing D;
for training batch do

Optimize θ = {Φ,W, θf} w.r.t Equation 8.
end

end
Testing;
Input: Label names of n′ event types.Test examples

{x}.
Result: Set of {e, p} event type, position pairs.
Compute class vectors for new classes cn+1, · · · , cn′ ;
Compute D;
Compute M by decomposing D;
for test example do

Predict y for x sequence.
end

BERT-Large. The event type token labels are ac-
cepted if the similarity is higher than 0.65 and the
O label is assigned if none of the similarity scores
are higher than 0.4. For cases in between, we as-
sign an X label which means ignoring the token for
loss computation.

3 Dataset Collection and Annotation
Details

We removed documents that have less than 100
tokens, and off-topic documents such as excerpts
from history books. In the annotation process, an-
notators can also flag documents as duplicates, or
irrelevant. All documents are in English.

When using the KAIROS event ontology,
out of the 67 defined event types, we use
51 types that were found in our dataset
and merge some rarely seen sub-subevent
types. In particular, event sub-subtypes under
Contact.Prevarication, Contact.RequestCommand,
Contact.ThreatenCoerce were merged. Move-
ment.Transportation.GrantAllowPassage, Transac-
tion.AidBetweenGovernments.Unspecified, Per-
sonnel.ChangePosition types were omitted.

Before the event annotation stage, we run a
SOTA entity detection model OneIE (Lin et al.,
2020) to highlight entity spans. Although this
model is not perfect, it can help annotators find
candidates for event arguments and reduce annota-
tion time.

The task for the event annotation stage is to iden-
tify event trigger and argument spans and label

Parameter Value

Base Model BART-large
Learning rate [1e-5, 3e-5]

Scheduler Linear (without warmup)
Batch size 2*8

Max sequence length 512
Training epochs [3,6]

Beam size 4

Table 1: Hyperparameters for argument extraction

them with the correct event type (argument role).
Annotators can also add missing entities or correct
the automatic produced entity spans. A two-pass
procedure is applied to control the quality of an-
notation: after annotator A finishes, we randomly
assign the annotated document to another more
senior annotation B for correction.

After stage 1 finishes, we clean up the annotation
by aligning the spans back to word boundaries and
then run a joint entity and event coreference system.
In stage 2, the annotators are presented with entity
(event) clusters and asked to correct them.

4 Implementation Details

We use the BART-large model (Lewis et al., 2020)
for our argument extraction model. Hyperparam-
eters are presented in Table 1. For the zero-shot
transfer settings, we trained with a smaller learning
rate (1e-5) and more epochs (6).

For the trigger extraction task, we used the
BERT-large-cased (Devlin et al., 2019) model. The
list of hyperparameters as shown in Table 2.

The BERT-CRF model is similar to (Shi and
Lin, 2019). To indicate the trigger, we append the
trigger to the input sentence: [CLS] sentence
[SEP] trigger [SEP].

In order to adapt the BERT-QA model for our
event ontology, we use the Template 2 (argument
based question template) for argument extraction
with trigger information: [wh_word] is the
[role name] in [trigger]?

5 Additional Experiments on ACE

In Tables 4 and 5 we show the complete trigger
extraction and argument extraction results on ACE.
Entries with an asterisk (*) indicate that these are
reported numbers and may be prone to slight dif-
ferences in dataset splitting and pre-processing.

Parameter Value

Base Model BERT-large-cased
Learning rate 3e-5
Weight decay 1e-5

Scheduler Linear (without warmup)
Batch size 8

Max sequence length 200 (ACE), 400 (WIKIEVENTS)
Training epochs 10
Projection dim 200

Regularization α 0.5

Table 2: Hyperparameters for trigger extraction

Parameter Value

Base Model BERT-large-cased
Learning rate 3e-5
Weight decay 1e-5

CRF learning rate 1e-4
Dropout 0.4

Scheduler Linear (without warmup)
Batch size 8

Max sequence length 200 (ACE), 400 (WIKIEVENTS)
Training epochs 10

Table 3: Hyperparameters for BERT-CRF baseline.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon.
2019. Tapnet: Neural network augmented with task-
adaptive projection for few-shot learning. In ICML.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
http://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255

Seen Event Types Model TI Precision TI Recall TI F1 TC Precision TC Recall TC F1

0
Prototype 1.64 56.03 3.19 1.14 39.01 2.22
TAPKEY 51.76 59.1 55.19 48.86 55.79 52.10

10 most frequent
Prototype 67.03 72.1 69.48 63.74 68.56 66.06
BERT-QA 66.25 50.12 57.06 62.5 47.28 53.83
TAPKEY 67.56 77.78 72.31 64.68 74.47 69.23

1 per general type
Prototype 70.53 66.19 68.29 68.01 63.83 65.85
BERT-QA 64.91 17.49 27.56 59.64 16.07 25.32
TAPKEY 66.73 78.72 72.23 63.33 74.7 68.55

All

DYGIE++* - - - - - 69.7
OneIE* - - 78.2 - - 74.7

BERT-CRF 73.73 69.59
Prototype 68.1 78.72 73.03 64.83 74.94 69.52
BERT-QA 68.91 77.54 72.97 65.13 73.29 68.97
TAPKEY 72.69 76.12 74.36 69.53 72.81 71.13

Table 4: Trigger extraction results on ACE05. Results from DYGIE++ and OneIE are from their papers.

Triggers Model AI Precision AI Recall AI F1 AC Precision AC Recall AC F1

Predicted

DYGIE++* - - 55.4 - - 52.5
OneIE* - - 59.2 - - 56.8

BERT-QA* 58.02 50.69 54.11 56.87 49.83 53.12
BART-Gen 57.57 53.05 55.22 55.99 51.60 53.71

Gold BERT-QA 69.16 62.65 65.74 66.51 60.47 63.34
BART-Gen 71.13 68.75 69.92 67.82 65.55 66.67

Table 5: Argument extraction results on ACE05. * indicate reported results.

