from llama_index import SimpleDirectoryReader, GPTListIndex, GPTVectorStoreIndex, LLMPredictor, PromptHelper from langchain.chat_models import ChatOpenAI import gradio as gr import sys import os from llama_index import StorageContext, load_index_from_storage os.environ["OPENAI_API_KEY"] = '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' def construct_index(base_directory): full_path = os.path.join(base_directory, "docs") max_input_size = 40960 num_outputs = 5120 max_chunk_overlap = 0.4 chunk_size_limit = 600 prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.8, model_name="gpt-3.5-turbo-0613", max_tokens=num_outputs)) documents = SimpleDirectoryReader(full_path).load_data() index = GPTVectorStoreIndex.from_documents(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper) index.storage_context.persist() #print(index) #index.save_to_disk('index.json') return index def chatbot(input_text): #index = GPTVectorStoreIndex.load_from_disk('index.json') # rebuild storage context # load index storage_context = StorageContext.from_defaults(persist_dir='./storage')########## index = load_index_from_storage(storage_context)###################### query_engine = index.as_query_engine() response = query_engine.query(input_text) return response.response iface = gr.Interface(fn=chatbot, inputs=gr.components.Textbox(lines=7, label="Enter your text"), outputs="text", title="MCQ AI Chatbot") #index = construct_index("docs") index = construct_index("") iface.launch(share=True)