import json import os import re import time from datetime import datetime from itertools import product from typing import Callable import numpy as np import spaces import torch from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType from compel.prompt_parser import PromptParser from huggingface_hub.utils import HFValidationError, RepositoryNotFoundError from PIL import Image from .loader import Loader __import__("warnings").filterwarnings("ignore", category=FutureWarning, module="transformers") __import__("transformers").logging.set_verbosity_error() with open("./data/styles.json") as f: styles = json.load(f) # parse prompts with arrays def parse_prompt(prompt: str) -> list[str]: arrays = re.findall(r"\[\[(.*?)\]\]", prompt) if not arrays: return [prompt] tokens = [item.split(",") for item in arrays] combinations = list(product(*tokens)) prompts = [] for combo in combinations: current_prompt = prompt for i, token in enumerate(combo): current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1) prompts.append(current_prompt) return prompts def apply_style(prompt, style_id, negative=False): global styles if not style_id or style_id == "None": return prompt for style in styles: if style["id"] == style_id: if negative: return prompt + " . " + style["negative_prompt"] else: return style["prompt"].format(prompt=prompt) return prompt def prepare_image(input, size=(512, 512)): image = None if isinstance(input, Image.Image): image = input if isinstance(input, np.ndarray): image = Image.fromarray(input) if isinstance(input, str): if os.path.isfile(input): image = Image.open(input) if image is not None: return image.convert("RGB").resize(size, Image.Resampling.LANCZOS) else: raise ValueError("Invalid image prompt") @spaces.GPU(duration=40) def generate( positive_prompt, negative_prompt="", image_prompt=None, embeddings=[], style=None, seed=None, model="runwayml/stable-diffusion-v1-5", scheduler="PNDM", width=512, height=512, guidance_scale=7.5, inference_steps=50, denoising_strength=0.8, num_images=1, karras=False, taesd=False, freeu=False, clip_skip=False, truncate_prompts=False, increment_seed=True, deepcache=1, scale=1, Info: Callable[[str], None] = None, Error=Exception, ): if not torch.cuda.is_available(): raise Error("CUDA not available") # https://pytorch.org/docs/stable/generated/torch.manual_seed.html if seed is None or seed < 0: seed = int(datetime.now().timestamp() * 1_000_000) % (2**64) DEVICE = torch.device("cuda") DTYPE = ( torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_properties(DEVICE).major >= 8 else torch.float16 ) EMBEDDINGS_TYPE = ( ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NORMALIZED if clip_skip else ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED ) KIND = "img2img" if image_prompt is not None else "txt2img" with torch.inference_mode(): start = time.perf_counter() loader = Loader() pipe, upscaler = loader.load( KIND, model, scheduler, karras, taesd, freeu, deepcache, scale, DEVICE, DTYPE, ) # load embeddings and append to negative prompt embeddings_dir = os.path.join(os.path.dirname(__file__), "..", "embeddings") embeddings_dir = os.path.abspath(embeddings_dir) for embedding in embeddings: try: pipe.load_textual_inversion( pretrained_model_name_or_path=f"{embeddings_dir}/{embedding}.pt", token=f"<{embedding}>", ) negative_prompt = ( f"{negative_prompt}, {embedding}" if negative_prompt else embedding ) except (EnvironmentError, HFValidationError, RepositoryNotFoundError): raise Error(f"Invalid embedding: {embedding}") # prompt embeds compel = Compel( device=pipe.device, tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, truncate_long_prompts=truncate_prompts, dtype_for_device_getter=lambda _: DTYPE, returned_embeddings_type=EMBEDDINGS_TYPE, textual_inversion_manager=DiffusersTextualInversionManager(pipe), ) images = [] current_seed = seed try: styled_negative_prompt = apply_style(negative_prompt, style, negative=True) neg_embeds = compel(styled_negative_prompt) except PromptParser.ParsingException: raise Error("ParsingException: Invalid negative prompt") for i in range(num_images): # seeded generator for each iteration generator = torch.Generator(device=pipe.device).manual_seed(current_seed) try: all_positive_prompts = parse_prompt(positive_prompt) prompt_index = i % len(all_positive_prompts) pos_prompt = all_positive_prompts[prompt_index] styled_pos_prompt = apply_style(pos_prompt, style) pos_embeds = compel(styled_pos_prompt) pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length( [pos_embeds, neg_embeds] ) except PromptParser.ParsingException: raise Error("ParsingException: Invalid prompt") kwargs = { "width": width, "height": height, "generator": generator, "prompt_embeds": pos_embeds, "guidance_scale": guidance_scale, "negative_prompt_embeds": neg_embeds, "num_inference_steps": inference_steps, "output_type": "np" if scale > 1 else "pil", } if KIND == "img2img": kwargs["strength"] = denoising_strength kwargs["image"] = prepare_image(image_prompt, (width, height)) try: image = pipe(**kwargs).images[0] if scale > 1: image = upscaler.predict(image) images.append((image, str(current_seed))) finally: pipe.unload_textual_inversion() torch.cuda.empty_cache() if increment_seed: current_seed += 1 diff = time.perf_counter() - start if Info: Info(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s") return images