Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Commit
•
ca5a1e4
1
Parent(s):
5f7707a
Move to lib
Browse files- app.py +1 -1
- cli.py +1 -1
- lib/__init__.py +2 -0
- generate.py → lib/inference.py +2 -158
- lib/loader.py +166 -0
app.py
CHANGED
@@ -4,7 +4,7 @@ import json
|
|
4 |
import gradio as gr
|
5 |
|
6 |
import config as cfg
|
7 |
-
from
|
8 |
|
9 |
# the CSS `content` attribute expects a string so we need to wrap the number in quotes
|
10 |
random_seed_js = """
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
import config as cfg
|
7 |
+
from lib import generate
|
8 |
|
9 |
# the CSS `content` attribute expects a string so we need to wrap the number in quotes
|
10 |
random_seed_js = """
|
cli.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import argparse
|
4 |
|
5 |
import config as cfg
|
6 |
-
from
|
7 |
|
8 |
|
9 |
def save_images(images, filename="image.png"):
|
|
|
3 |
import argparse
|
4 |
|
5 |
import config as cfg
|
6 |
+
from lib import generate
|
7 |
|
8 |
|
9 |
def save_images(images, filename="image.png"):
|
lib/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .inference import generate
|
2 |
+
from .loader import Loader
|
generate.py → lib/inference.py
RENAMED
@@ -12,19 +12,8 @@ import tomesd
|
|
12 |
import torch
|
13 |
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
|
14 |
from compel.prompt_parser import PromptParser
|
15 |
-
|
16 |
-
from
|
17 |
-
DEISMultistepScheduler,
|
18 |
-
DPMSolverMultistepScheduler,
|
19 |
-
EulerAncestralDiscreteScheduler,
|
20 |
-
HeunDiscreteScheduler,
|
21 |
-
KDPM2AncestralDiscreteScheduler,
|
22 |
-
LMSDiscreteScheduler,
|
23 |
-
PNDMScheduler,
|
24 |
-
StableDiffusionPipeline,
|
25 |
-
)
|
26 |
-
from diffusers.models import AutoencoderKL, AutoencoderTiny
|
27 |
-
from torch._dynamo import OptimizedModule
|
28 |
|
29 |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
|
30 |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="transformers")
|
@@ -35,155 +24,10 @@ ZERO_GPU = (
|
|
35 |
or os.environ.get("SPACES_ZERO_GPU", "") == "1"
|
36 |
)
|
37 |
|
38 |
-
EMBEDDINGS = {
|
39 |
-
"./embeddings/bad_prompt_version2.pt": "<bad_prompt>",
|
40 |
-
"./embeddings/BadDream.pt": "<bad_dream>",
|
41 |
-
"./embeddings/FastNegativeV2.pt": "<fast_negative>",
|
42 |
-
"./embeddings/negative_hand.pt": "<negative_hand>",
|
43 |
-
"./embeddings/UnrealisticDream.pt": "<unrealistic_dream>",
|
44 |
-
}
|
45 |
-
|
46 |
with open("./styles/twri.json") as f:
|
47 |
styles = json.load(f)
|
48 |
|
49 |
|
50 |
-
# inspired by ComfyUI
|
51 |
-
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py
|
52 |
-
class Loader:
|
53 |
-
_instance = None
|
54 |
-
|
55 |
-
def __new__(cls):
|
56 |
-
if cls._instance is None:
|
57 |
-
cls._instance = super(Loader, cls).__new__(cls)
|
58 |
-
cls._instance.pipe = None
|
59 |
-
return cls._instance
|
60 |
-
|
61 |
-
def _load_deepcache(self, interval=1):
|
62 |
-
has_deepcache = hasattr(self.pipe, "deepcache")
|
63 |
-
|
64 |
-
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
|
65 |
-
return
|
66 |
-
if has_deepcache:
|
67 |
-
self.pipe.deepcache.disable()
|
68 |
-
else:
|
69 |
-
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
|
70 |
-
|
71 |
-
self.pipe.deepcache.set_params(cache_interval=interval)
|
72 |
-
self.pipe.deepcache.enable()
|
73 |
-
|
74 |
-
def _load_vae(self, model_name=None, taesd=False, variant=None):
|
75 |
-
vae_type = type(self.pipe.vae)
|
76 |
-
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
|
77 |
-
is_tiny = issubclass(vae_type, AutoencoderTiny)
|
78 |
-
|
79 |
-
# by default all models use KL
|
80 |
-
if is_kl and taesd:
|
81 |
-
# can't compile tiny VAE
|
82 |
-
print("Switching to Tiny VAE...")
|
83 |
-
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
84 |
-
pretrained_model_name_or_path="madebyollin/taesd",
|
85 |
-
use_safetensors=True,
|
86 |
-
).to(device=self.pipe.device)
|
87 |
-
return
|
88 |
-
|
89 |
-
if is_tiny and not taesd:
|
90 |
-
print("Switching to KL VAE...")
|
91 |
-
model = AutoencoderKL.from_pretrained(
|
92 |
-
pretrained_model_name_or_path=model_name,
|
93 |
-
use_safetensors=True,
|
94 |
-
subfolder="vae",
|
95 |
-
variant=variant,
|
96 |
-
).to(device=self.pipe.device)
|
97 |
-
self.pipe.vae = torch.compile(
|
98 |
-
mode="reduce-overhead",
|
99 |
-
fullgraph=True,
|
100 |
-
model=model,
|
101 |
-
)
|
102 |
-
|
103 |
-
def load(self, model, scheduler, karras, taesd, deepcache_interval, dtype, device):
|
104 |
-
model_lower = model.lower()
|
105 |
-
|
106 |
-
schedulers = {
|
107 |
-
"DEIS 2M": DEISMultistepScheduler,
|
108 |
-
"DPM++ 2M": DPMSolverMultistepScheduler,
|
109 |
-
"DPM2 a": KDPM2AncestralDiscreteScheduler,
|
110 |
-
"Euler a": EulerAncestralDiscreteScheduler,
|
111 |
-
"Heun": HeunDiscreteScheduler,
|
112 |
-
"LMS": LMSDiscreteScheduler,
|
113 |
-
"PNDM": PNDMScheduler,
|
114 |
-
}
|
115 |
-
|
116 |
-
scheduler_kwargs = {
|
117 |
-
"beta_schedule": "scaled_linear",
|
118 |
-
"timestep_spacing": "leading",
|
119 |
-
"use_karras_sigmas": karras,
|
120 |
-
"beta_start": 0.00085,
|
121 |
-
"beta_end": 0.012,
|
122 |
-
"steps_offset": 1,
|
123 |
-
}
|
124 |
-
|
125 |
-
if scheduler in ["Euler a", "PNDM"]:
|
126 |
-
del scheduler_kwargs["use_karras_sigmas"]
|
127 |
-
|
128 |
-
# no fp16 variant
|
129 |
-
if not ZERO_GPU and model_lower not in [
|
130 |
-
"sg161222/realistic_vision_v5.1_novae",
|
131 |
-
"prompthero/openjourney-v4",
|
132 |
-
"linaqruf/anything-v3-1",
|
133 |
-
]:
|
134 |
-
variant = "fp16"
|
135 |
-
else:
|
136 |
-
variant = None
|
137 |
-
|
138 |
-
pipe_kwargs = {
|
139 |
-
"scheduler": schedulers[scheduler](**scheduler_kwargs),
|
140 |
-
"pretrained_model_name_or_path": model_lower,
|
141 |
-
"requires_safety_checker": False,
|
142 |
-
"use_safetensors": True,
|
143 |
-
"safety_checker": None,
|
144 |
-
"variant": variant,
|
145 |
-
}
|
146 |
-
|
147 |
-
# already loaded
|
148 |
-
if self.pipe is not None:
|
149 |
-
model_name = self.pipe.config._name_or_path
|
150 |
-
same_model = model_name.lower() == model_lower
|
151 |
-
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
|
152 |
-
same_karras = (
|
153 |
-
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
|
154 |
-
or self.pipe.scheduler.config.use_karras_sigmas == karras
|
155 |
-
)
|
156 |
-
|
157 |
-
if same_model:
|
158 |
-
if not same_scheduler:
|
159 |
-
print(f"Switching to {scheduler}...")
|
160 |
-
if not same_karras:
|
161 |
-
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
162 |
-
if not same_scheduler or not same_karras:
|
163 |
-
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
164 |
-
self._load_vae(model_lower, taesd, variant)
|
165 |
-
self._load_deepcache(interval=deepcache_interval)
|
166 |
-
return self.pipe
|
167 |
-
else:
|
168 |
-
print(f"Unloading {model_name.lower()}...")
|
169 |
-
self.pipe = None
|
170 |
-
|
171 |
-
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
172 |
-
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(
|
173 |
-
device=device,
|
174 |
-
dtype=dtype,
|
175 |
-
)
|
176 |
-
self.pipe.load_textual_inversion(
|
177 |
-
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
178 |
-
tokens=list(EMBEDDINGS.values()),
|
179 |
-
)
|
180 |
-
self._load_vae(model_lower, taesd, variant)
|
181 |
-
self._load_deepcache(interval=deepcache_interval)
|
182 |
-
|
183 |
-
torch.cuda.empty_cache()
|
184 |
-
return self.pipe
|
185 |
-
|
186 |
-
|
187 |
# applies tome to the pipeline
|
188 |
@contextmanager
|
189 |
def token_merging(pipe, tome_ratio=0):
|
|
|
12 |
import torch
|
13 |
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
|
14 |
from compel.prompt_parser import PromptParser
|
15 |
+
|
16 |
+
from .loader import Loader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
|
19 |
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="transformers")
|
|
|
24 |
or os.environ.get("SPACES_ZERO_GPU", "") == "1"
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
with open("./styles/twri.json") as f:
|
28 |
styles = json.load(f)
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# applies tome to the pipeline
|
32 |
@contextmanager
|
33 |
def token_merging(pipe, tome_ratio=0):
|
lib/loader.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from DeepCache import DeepCacheSDHelper
|
5 |
+
from diffusers import (
|
6 |
+
DEISMultistepScheduler,
|
7 |
+
DPMSolverMultistepScheduler,
|
8 |
+
EulerAncestralDiscreteScheduler,
|
9 |
+
HeunDiscreteScheduler,
|
10 |
+
KDPM2AncestralDiscreteScheduler,
|
11 |
+
LMSDiscreteScheduler,
|
12 |
+
PNDMScheduler,
|
13 |
+
StableDiffusionPipeline,
|
14 |
+
)
|
15 |
+
from diffusers.models import AutoencoderKL, AutoencoderTiny
|
16 |
+
from torch._dynamo import OptimizedModule
|
17 |
+
|
18 |
+
ZERO_GPU = (
|
19 |
+
os.environ.get("SPACES_ZERO_GPU", "").lower() == "true"
|
20 |
+
or os.environ.get("SPACES_ZERO_GPU", "") == "1"
|
21 |
+
)
|
22 |
+
|
23 |
+
EMBEDDINGS = {
|
24 |
+
"./embeddings/bad_prompt_version2.pt": "<bad_prompt>",
|
25 |
+
"./embeddings/BadDream.pt": "<bad_dream>",
|
26 |
+
"./embeddings/FastNegativeV2.pt": "<fast_negative>",
|
27 |
+
"./embeddings/negative_hand.pt": "<negative_hand>",
|
28 |
+
"./embeddings/UnrealisticDream.pt": "<unrealistic_dream>",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
# inspired by ComfyUI
|
33 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py
|
34 |
+
class Loader:
|
35 |
+
_instance = None
|
36 |
+
|
37 |
+
def __new__(cls):
|
38 |
+
if cls._instance is None:
|
39 |
+
cls._instance = super(Loader, cls).__new__(cls)
|
40 |
+
cls._instance.pipe = None
|
41 |
+
return cls._instance
|
42 |
+
|
43 |
+
def _load_deepcache(self, interval=1):
|
44 |
+
has_deepcache = hasattr(self.pipe, "deepcache")
|
45 |
+
|
46 |
+
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
|
47 |
+
return
|
48 |
+
if has_deepcache:
|
49 |
+
self.pipe.deepcache.disable()
|
50 |
+
else:
|
51 |
+
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
|
52 |
+
|
53 |
+
self.pipe.deepcache.set_params(cache_interval=interval)
|
54 |
+
self.pipe.deepcache.enable()
|
55 |
+
|
56 |
+
def _load_vae(self, model_name=None, taesd=False, variant=None):
|
57 |
+
vae_type = type(self.pipe.vae)
|
58 |
+
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
|
59 |
+
is_tiny = issubclass(vae_type, AutoencoderTiny)
|
60 |
+
|
61 |
+
# by default all models use KL
|
62 |
+
if is_kl and taesd:
|
63 |
+
# can't compile tiny VAE
|
64 |
+
print("Switching to Tiny VAE...")
|
65 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
66 |
+
pretrained_model_name_or_path="madebyollin/taesd",
|
67 |
+
use_safetensors=True,
|
68 |
+
).to(device=self.pipe.device)
|
69 |
+
return
|
70 |
+
|
71 |
+
if is_tiny and not taesd:
|
72 |
+
print("Switching to KL VAE...")
|
73 |
+
model = AutoencoderKL.from_pretrained(
|
74 |
+
pretrained_model_name_or_path=model_name,
|
75 |
+
use_safetensors=True,
|
76 |
+
subfolder="vae",
|
77 |
+
variant=variant,
|
78 |
+
).to(device=self.pipe.device)
|
79 |
+
self.pipe.vae = torch.compile(
|
80 |
+
mode="reduce-overhead",
|
81 |
+
fullgraph=True,
|
82 |
+
model=model,
|
83 |
+
)
|
84 |
+
|
85 |
+
def load(self, model, scheduler, karras, taesd, deepcache_interval, dtype, device):
|
86 |
+
model_lower = model.lower()
|
87 |
+
|
88 |
+
schedulers = {
|
89 |
+
"DEIS 2M": DEISMultistepScheduler,
|
90 |
+
"DPM++ 2M": DPMSolverMultistepScheduler,
|
91 |
+
"DPM2 a": KDPM2AncestralDiscreteScheduler,
|
92 |
+
"Euler a": EulerAncestralDiscreteScheduler,
|
93 |
+
"Heun": HeunDiscreteScheduler,
|
94 |
+
"LMS": LMSDiscreteScheduler,
|
95 |
+
"PNDM": PNDMScheduler,
|
96 |
+
}
|
97 |
+
|
98 |
+
scheduler_kwargs = {
|
99 |
+
"beta_schedule": "scaled_linear",
|
100 |
+
"timestep_spacing": "leading",
|
101 |
+
"use_karras_sigmas": karras,
|
102 |
+
"beta_start": 0.00085,
|
103 |
+
"beta_end": 0.012,
|
104 |
+
"steps_offset": 1,
|
105 |
+
}
|
106 |
+
|
107 |
+
if scheduler in ["Euler a", "PNDM"]:
|
108 |
+
del scheduler_kwargs["use_karras_sigmas"]
|
109 |
+
|
110 |
+
# no fp16 variant
|
111 |
+
if not ZERO_GPU and model_lower not in [
|
112 |
+
"sg161222/realistic_vision_v5.1_novae",
|
113 |
+
"prompthero/openjourney-v4",
|
114 |
+
"linaqruf/anything-v3-1",
|
115 |
+
]:
|
116 |
+
variant = "fp16"
|
117 |
+
else:
|
118 |
+
variant = None
|
119 |
+
|
120 |
+
pipe_kwargs = {
|
121 |
+
"scheduler": schedulers[scheduler](**scheduler_kwargs),
|
122 |
+
"pretrained_model_name_or_path": model_lower,
|
123 |
+
"requires_safety_checker": False,
|
124 |
+
"use_safetensors": True,
|
125 |
+
"safety_checker": None,
|
126 |
+
"variant": variant,
|
127 |
+
}
|
128 |
+
|
129 |
+
# already loaded
|
130 |
+
if self.pipe is not None:
|
131 |
+
model_name = self.pipe.config._name_or_path
|
132 |
+
same_model = model_name.lower() == model_lower
|
133 |
+
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
|
134 |
+
same_karras = (
|
135 |
+
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
|
136 |
+
or self.pipe.scheduler.config.use_karras_sigmas == karras
|
137 |
+
)
|
138 |
+
|
139 |
+
if same_model:
|
140 |
+
if not same_scheduler:
|
141 |
+
print(f"Switching to {scheduler}...")
|
142 |
+
if not same_karras:
|
143 |
+
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
144 |
+
if not same_scheduler or not same_karras:
|
145 |
+
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
146 |
+
self._load_vae(model_lower, taesd, variant)
|
147 |
+
self._load_deepcache(interval=deepcache_interval)
|
148 |
+
return self.pipe
|
149 |
+
else:
|
150 |
+
print(f"Unloading {model_name.lower()}...")
|
151 |
+
self.pipe = None
|
152 |
+
|
153 |
+
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
154 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(
|
155 |
+
device=device,
|
156 |
+
dtype=dtype,
|
157 |
+
)
|
158 |
+
self.pipe.load_textual_inversion(
|
159 |
+
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
160 |
+
tokens=list(EMBEDDINGS.values()),
|
161 |
+
)
|
162 |
+
self._load_vae(model_lower, taesd, variant)
|
163 |
+
self._load_deepcache(interval=deepcache_interval)
|
164 |
+
|
165 |
+
torch.cuda.empty_cache()
|
166 |
+
return self.pipe
|