# Diffusion XL TL;DR: Enter a prompt or roll the `🎲` and press `Generate`. ## Prompting Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more and read [Civitai](https://civitai.com)'s guide on [prompting](https://education.civitai.com/civitais-prompt-crafting-guide-part-1-basics/) for best practices. ### Arrays Arrays allow you to generate different images from a single prompt. For example, `[[cat,corgi]]` will expand into 2 separate prompts. Make sure `Images` is set accordingly (e.g., 2). Only works for the positive prompt. Inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503). ## Styles Styles are prompt templates from twri's [sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node. Start with a subject like "cat", pick a style, and iterate from there. ## Scale Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) from [ai-forever](https://huggingface.co/ai-forever/Real-ESRGAN). ## Models Each model checkpoint has a different aesthetic: * [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1): anime * [cyberdelia/CyberRealisticXL](https://huggingface.co/cyberdelia/CyberRealsticXL): photorealistic * [fluently/Fluently-XL-Final](https://huggingface.co/fluently/Fluently-XL-Final): general purpose * [segmind/Segmind-Vega](https://huggingface.co/segmind/Segmind-Vega): lightweight general purpose (default) * [SG161222/RealVisXL_V5.0](https://huggingface.co/SG161222/RealVisXL_V5.0): photorealistic * [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0): base ## Advanced ### DeepCache [DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed: * `1`: no caching (default) * `2`: more quality * `3`: balanced * `4`: more speed ### Refiner Use the [ensemble of expert denoisers](https://research.nvidia.com/labs/dir/eDiff-I/) technique, where the first 80% of timesteps are denoised by the base model and the remaining 80% by the [refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0). Not available with image-to-image pipelines.