from config import SHARE, MODELS, TRAINING_PARAMS, LORA_TRAINING_PARAMS, GENERATION_PARAMS import os import gradio as gr import random from trainer import Trainer LORA_DIR = 'lora' def random_name(): fruits = [ "dragonfruit", "kiwano", "rambutan", "durian", "mangosteen", "jabuticaba", "pitaya", "persimmon", "acai", "starfruit" ] return '-'.join(random.sample(fruits, 3)) class UI(): def __init__(self): self.trainer = Trainer() def load_loras(self): loaded_model_name = self.trainer.model_name if os.path.exists(LORA_DIR) and loaded_model_name is not None: loras = [f for f in os.listdir(LORA_DIR)] sanitized_model_name = loaded_model_name.replace('/', '_').replace('.', '_') loras = [f for f in loras if f.startswith(sanitized_model_name)] loras.insert(0, 'None') return gr.Dropdown.update(choices=loras) else: return gr.Dropdown.update(choices=['None'], value='None') def training_params_block(self): with gr.Row(): with gr.Column(): self.max_seq_length = gr.Slider( interactive=True, minimum=1, maximum=4096, value=TRAINING_PARAMS['max_seq_length'], label="Max Sequence Length", ) self.micro_batch_size = gr.Slider( minimum=1, maximum=100, step=1, value=TRAINING_PARAMS['micro_batch_size'], label="Micro Batch Size", ) self.gradient_accumulation_steps = gr.Slider( minimum=1, maximum=128, step=1, value=TRAINING_PARAMS['gradient_accumulation_steps'], label="Gradient Accumulation Steps", ) self.epochs = gr.Slider( minimum=1, maximum=100, step=1, value=TRAINING_PARAMS['epochs'], label="Epochs", ) self.learning_rate = gr.Slider( minimum=0.00001, maximum=0.01, value=TRAINING_PARAMS['learning_rate'], label="Learning Rate", ) with gr.Column(): self.lora_r = gr.Slider( minimum=1, maximum=64, step=1, value=LORA_TRAINING_PARAMS['lora_r'], label="LoRA R", ) self.lora_alpha = gr.Slider( minimum=1, maximum=128, step=1, value=LORA_TRAINING_PARAMS['lora_alpha'], label="LoRA Alpha", ) self.lora_dropout = gr.Slider( minimum=0, maximum=1, step=0.01, value=LORA_TRAINING_PARAMS['lora_dropout'], label="LoRA Dropout", ) def load_model(self, model_name, progress=gr.Progress(track_tqdm=True)): if model_name == '': return '' if model_name is None: return self.trainer.model_name progress(0, desc=f'Loading {model_name}...') self.trainer.load_model(model_name) return self.trainer.model_name def base_model_block(self): self.model_name = gr.Dropdown(label='Base Model', choices=MODELS) def training_data_block(self): training_text = gr.TextArea( lines=20, label="Training Data", info='Paste training data text here. Sequences must be separated with 2 blank lines' ) examples_dir = os.path.join(os.getcwd(), 'example-datasets') def load_example(filename): with open(os.path.join(examples_dir, filename) , 'r', encoding='utf-8') as f: return f.read() example_filename = gr.Textbox(visible=False) example_filename.change(fn=load_example, inputs=example_filename, outputs=training_text) gr.Examples("./example-datasets", inputs=example_filename) self.training_text = training_text def training_launch_block(self): with gr.Row(): with gr.Column(): self.new_lora_name = gr.Textbox(label='New PEFT Adapter Name', value=random_name()) with gr.Column(): train_button = gr.Button('Train', variant='primary') def train( training_text, new_lora_name, max_seq_length, micro_batch_size, gradient_accumulation_steps, epochs, learning_rate, lora_r, lora_alpha, lora_dropout, progress=gr.Progress(track_tqdm=True) ): self.trainer.unload_lora() self.trainer.train( training_text, new_lora_name, max_seq_length=max_seq_length, micro_batch_size=micro_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, epochs=epochs, learning_rate=learning_rate, lora_r=lora_r, lora_alpha=lora_alpha, lora_dropout=lora_dropout ) return new_lora_name train_button.click( fn=train, inputs=[ self.training_text, self.new_lora_name, self.max_seq_length, self.micro_batch_size, self.gradient_accumulation_steps, self.epochs, self.learning_rate, self.lora_r, self.lora_alpha, self.lora_dropout, ], outputs=[self.new_lora_name] ).then( fn=lambda x: self.trainer.load_model(x, force=True), inputs=[self.model_name], outputs=[] ) def inference_block(self): with gr.Row(): with gr.Column(): self.lora_name = gr.Dropdown( interactive=True, choices=['None'], value='None', label='LoRA', ) def load_lora(lora_name, progress=gr.Progress(track_tqdm=True)): if lora_name == 'None': self.trainer.unload_lora() else: self.trainer.load_lora(f'{LORA_DIR}/{lora_name}') return lora_name self.lora_name.change( fn=load_lora, inputs=self.lora_name, outputs=self.lora_name ) self.prompt = gr.Textbox( interactive=True, lines=5, label="Prompt", value="Human: How is cheese made?\nAssistant:" ) self.generate_btn = gr.Button('Generate', variant='primary') with gr.Row(): with gr.Column(): self.max_new_tokens = gr.Slider( minimum=0, maximum=4096, step=1, value=GENERATION_PARAMS['max_new_tokens'], label="Max New Tokens", ) with gr.Column(): self.do_sample = gr.Checkbox( interactive=True, label="Enable Sampling (leave off for greedy search)", value=True, ) with gr.Row(): with gr.Column(): self.num_beams = gr.Slider( minimum=1, maximum=10, step=1, value=GENERATION_PARAMS['num_beams'], label="Num Beams", ) with gr.Column(): self.repeat_penalty = gr.Slider( minimum=0, maximum=4.5, step=0.01, value=GENERATION_PARAMS['repetition_penalty'], label="Repetition Penalty", ) with gr.Row(): with gr.Column(): self.temperature = gr.Slider( minimum=0.01, maximum=1.99, step=0.01, value=GENERATION_PARAMS['temperature'], label="Temperature", ) self.top_p = gr.Slider( minimum=0, maximum=1, step=0.01, value=GENERATION_PARAMS['top_p'], label="Top P", ) self.top_k = gr.Slider( minimum=0, maximum=200, step=1, value=GENERATION_PARAMS['top_k'], label="Top K", ) with gr.Column(): self.output = gr.Textbox( interactive=True, lines=20, label="Output" ) def generate( prompt, do_sample, max_new_tokens, num_beams, repeat_penalty, temperature, top_p, top_k, progress=gr.Progress(track_tqdm=True) ): return self.trainer.generate( prompt, do_sample=do_sample, max_new_tokens=max_new_tokens, num_beams=num_beams, repetition_penalty=repeat_penalty, temperature=temperature, top_p=top_p, top_k=top_k ) self.generate_btn.click( fn=generate, inputs=[ self.prompt, self.do_sample, self.max_new_tokens, self.num_beams, self.repeat_penalty, self.temperature, self.top_p, self.top_k ], outputs=[self.output] ) def layout(self): with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.HTML("""
Finetune an LLM on your own text. Duplicate this space onto a GPU-enabled space to run.
""") with gr.Column(): self.base_model_block() with gr.Tab('Finetuning'): with gr.Row(): with gr.Column(): self.training_data_block() with gr.Column(): self.training_params_block() self.training_launch_block() with gr.Tab('Inference') as inference_tab: with gr.Row(): with gr.Column(): self.inference_block() inference_tab.select( fn=self.load_loras, inputs=[], outputs=[self.lora_name] ) self.model_name.change( fn=self.load_model, inputs=[self.model_name], outputs=[self.model_name] ).then( fn=self.load_loras, inputs=[], outputs=[self.lora_name] ) return demo def run(self): self.ui = self.layout() self.ui.queue().launch(show_error=True, share=SHARE) if (__name__ == '__main__'): ui = UI() ui.run()